Max-Planck-Institut für Kernphysik

Max-Planck-Institut für Kernphysik

Wie die Welt zu ihrer heutigen Gestalt gekommen ist, bleibt in vielen Details noch ungeklärt. Die Forscher des Max-Planck-Instituts für Kernphysik wollen einige der Wissenslücken schließen und so an einer umfassenden Theorie dazu mitwirken. In der Astroteilchenphysik erforschen sie Struktur und Entstehungsgeschichte des Universums, die eng mit dem elementaren Aufbau der Materie verknüpft sind. Mit dem Gammastrahlen-Teleskop H.E.S.S. beobachten sie etwa die Überreste von Supernovae. Sie erforschen die Eigenschaften von Neutrinos, geisterhaften Elementarteilchen, und ergründen das Wesen der Dunklen Materie. In der Quantendynamik geht es ihnen um das Zusammenspiel der kleinsten Teilchen etwa in Atomkernen, Atomen und Molekülen, die sie in Beschleunigern, Speicherringen und Fallen studieren. Über Moleküle lernen sie auch mehr, indem sie einfache chemische Reaktionen mit intensivem Laserlicht steuern.

Kontakt

Saupfercheckweg 1
69117 Heidelberg
Telefon: +49 6221 516-0

Promotionsmöglichkeiten

Dieses Institut hat mehrere International Max Planck Research Schools (IMPRS):

IMPRS for Quantum Dynamics in Physics, Chemistry and Biology
IMPRS for Precision Tests of Fundamental Symmetries

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren und Forschungsgruppenleitern.

Abteilung Gespeicherte und gekühlte Ionen

mehr

Abteilung Theoretische Quantendynamik und Quantenelektrodynamik

mehr

Abteilung Teilchen- und Astroteilchenphysik

mehr

Abteilung Quantendynamik und -kontrolle

mehr

Abteilung Teilchenphysik und Hochenergie-Astrophysik

mehr
Masse des Deuterons korrigiert

Masse des Deuterons korrigiert

2. September 2020

Neue Erkenntnisse über die Zuverlässigkeit fundamentaler Größen der Atom- und Kernphysik

mehr
"Ich hoffe, dass mich alle als positiven Ansprechpartner sehen."

Klaus Blaum, der neue Vizepräsident der Max-Planck-Gesellschaft, im Interview

mehr
Neues Team, neue Ideen

Asifa Akhtar, Ulman Lindenberger und Klaus Blaum sind die neuen Vizepräsidenten der Max-Planck-Gesellschaft

mehr
Teilchenbeschleunigung über Tausende von Lichtjahren

H.E.S.S.-Beobachtungen zeigen den Jet von Centaurus A als ausgedehnte Quelle sehr hochenergetischen Gammalichts

mehr
Überraschendes Signal im Dunkle-Materie-Detektor

Für den Fund von XENON1T diskutieren die Experten mehrere mögliche Ursachen

mehr

Sie sahen aus wie überdimensionierte Garnrollen, steckten voller Technik aus mehreren Max-Planck-Instituten und sollten unser Verständnis der Sonne und des interplanetaren Mediums erheblich erweitern: Vor mehr als 40 Jahren wurden die beiden Helios-Sonden gestartet und auf eine gewagte Mission in die Hitze unseres Heimatsterns geschickt. Die beiden Raumfahrzeuge stehen aber auch für eine erfolgreiche wissenschaftliche Zusammenarbeit über Ländergrenzen hinweg.

Schwarze Löcher, Pulsare, Explosionswolken ehemaliger Sterne – diese Himmelskörper beschleunigen Partikel auf enorme Energien und senden hochenergetische Gammastrahlung aus. Mit den beiden Observatorien H.E.S.S. und MAGIC, die unter der Leitung der Max-Planck-Institute für Kernphysik in Heidelberg und für Physik in München entstanden sind, wird dieser extreme Spektralbereich zugänglich.

Es ist nicht mehr als eine winzige Asymmetrie zwischen der Materie und ihrem Spiegelbild, der Antimaterie, die zu einem Materieüberschuss im Universum führte. Ihr verdanken wir unsere Existenz.

Ausbildung zum Feinwerkmechaniker (m/w/d), Start September 2021

Max-Planck-Institut für Kernphysik, Heidelberg 20. August 2020

Ausbildung zum Elektroniker für Geräte und Systeme (m/w/d), Start September 2021

Max-Planck-Institut für Kernphysik, Heidelberg 20. Juli 2020

Ein Hauch von Ewigkeit: Die langsamste Kernumwandlung der Welt

2019 Simgen, Hardy; Marrodán Undagoitia, Teresa; Lindner, Manfred

Astrophysik Teilchenphysik

Gibt es etwas, das älter ist als unser Universum? Natürlich nicht, aber manche Vorgänge laufen so langsam ab, dass sogar Milliarden von Jahren dagegen so kurz wie ein Wimpernschlag wirken. So einen Prozess haben Physiker der XENON1T-Kollaboration entdeckt. Es handelt sich um den radioaktiven Zerfall des Atomkerns Xenon-124, den langsamsten je direkt gemessenen Zerfallsprozess. Die Halbwertszeit für diese extrem seltene Kernumwandlung liegt bei unvorstellbaren 1,8 × 1022Jahren. Das ist etwa eine Billion Mal länger als das Alter des Universums!

mehr

HAWC: Ein Observatorium für höchstenergetische Gammastrahlen

2018 Schoorlemmer, Harm; Hinton, Jim

Astronomie Astrophysik Teilchenphysik

Das High Altitude Water Cherenkov Gammastrahlen-Observatorium HAWC besteht aus einer Anordnung von Teilchendetektoren an einem hochgelegenen Ort in Mexiko. Es beobachtet höchstenergetische Gammastrahlen aus dem All, indem es deren Wechselwirkung mit der Atmosphäre misst. Wir geben einen Überblick über die Detektionstechnik, jüngste Entdeckungen und eine kürzlich installierte Erweiterung für allerhöchste Energien.

mehr

Hochpräzisions-Messung der Masse des Protons

2017 Köhler-Langes, Florian; Heiße, Fabian; Rau, Sascha; Sturm, Sven und Blaum, Klaus

Teilchenphysik

Von einzelnen Molekülen bis hin zu ganzen Planeten – all die uns umgebende sichtbare Materie besteht aus Atomen. Sämtliche Atome wiederum setzen sich aus lediglich drei Teilchenarten zusammen. Elektronen bilden die atomaren Hüllen, Protonen und Neutronen die Atomkerne. Grundlage für ein besseres Verständnis dieser atomaren Struktur ist die präzise Kenntnis ihrer Eigenschaften, wie zum Beispiel die Massen der erwähnten Teilchen. Mit einer ausgeklügelten Penningfallen-Apparatur ist nun die weltweit genaueste Messung der Masse des Protons gelungen [1].

mehr

Sind Neutrinos ihre eigenen Antiteilchen?

2016 Schwingenheuer, Bernhard; Heisel, Mark

Teilchenphysik

Trotz intensiver Forschung seit mehr als 60 Jahren wissen wir noch nicht, ob Neutrinos ihre eigenen Antiteilchen sind oder nicht. Dies hätte weitreichende Konsequenzen für Teilchenphysik und Kosmologie. Der neutrinolose Doppelbetazerfall könnte entscheidende Hinweise liefern. Das GERDA-Experiment sucht diesen bisher noch nicht gefundenen Zerfall für das Germanium-Isotop 76Ge. Derzeit hat GERDA die weltweit stärkste Unterdrückung von Störereignissen und die beste Energieauflösung, was ausgezeichnete Voraussetzungen für eine zukünftige Entdeckung des Zerfalls sind.

mehr

Neue Kontrollmöglichkeiten mit und für Röntgenlicht

2016 Pálffy, Adriana

Quantenphysik

Die neuen Röntgen-Freie-Elektronen-Laser erzeugen sehr intensive Röntgenpulse, mit denen sich sogar Übergänge in Atomkernen effizient steuern lassen. Eine solche Kontrolle könnte in der Zukunft eine neue Form von Energiespeicherung ermöglichen. Umgekehrt können Atomkerne zur Speicherung und Kontrolle von einzelnen Röntgenphotonen dienen. Diese gegenseitige Kontrolle von Kernen und Röntgenlicht eröffnet neue experimentelle Perspektiven für Anwendungen, die von der besonderen Robustheit, Eindringtiefe und vor allem Fokussierbarkeit der Röntgenphotonen profitieren.

mehr
Zur Redakteursansicht