Max-Planck-Institut für Festkörperforschung

Max-Planck-Institut für Festkörperforschung

Lithiumbatterien, die Elektroautos mit Strom versorgen, Supraleiter, die Strom über weite Strecken ohne Verlust leiten, Solarzellen, die die Sonnenenergie ernten – alles Beispiele, die auf den elektrischen Leitfähigkeitseigenschaften fester Stoffe beruhen. Mit solchen Phänomenen befassen sich die Wissenschaftler am Max-Planck-Institut für Festkörperforschung. Zu den Festkörpern zählen Metalle, Keramiken, aber auch Kristalle organischer Moleküle. Wie die Strukturen dieser Materialien ihre elektrischen, mechanischen oder magnetischen Eigenschaften beeinflussen, wollen Festkörperforscher verstehen. Im Blick haben sie insbesondere Festkörper im Nanomaßstab, die sich anders verhalten als Materialien in größeren Dimensionen. Ihr Verhalten zu kontrollieren ist Voraussetzung, um elektronische Schaltkreise weiter zu verkleinern oder die Elektronik nach dem Siliziumzeitalter vorzubereiten.

Kontakt

Heisenbergstraße 1
70569 Stuttgart
Telefon: +49 711 689-0
Fax: +49 711 689-1010

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS for Condensed Matter Science

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Abteilung Theorie der elektronischen Struktur

mehr

Abteilung Festkörper-Spektroskopie

mehr

Abteilung Nanowissenschaften

mehr

Abteilung Physikalische Festkörperchemie

mehr

Abteilung Festkörper-Quantenelektronik

mehr

Abteilung Quanten-Vielteilchensysteme

mehr

Abteilung Theorie der elektronischen Struktur

mehr

Abteilung Anorganische Festkörperchemie

mehr

Abteilung Niedrigdimensionale Elektronensysteme

mehr

Ein extrem schnelles Mikroskop ermöglicht ungeahnte Einblicke in die Dynamik von Elektronen in Molekülen

mehr

Die Max-Planck-Gesellschaft und die Alexander von Humboldt-Stiftung zeichnen Pablo Jarillo-Herrero, Anastassia Alexandrova und Sumit Gulwani aus

mehr

Eine neue Technik ermöglicht es, die räumliche Struktur von Polysacchariden mit einem Rastertunnelmikroskop abzubilden

mehr

Erstmals lassen sich kristalline Schichten der Edelmetalle erzeugen, die nur aus einer Atomlage bestehen und halbleitend sind

mehr

Eine neue Form der Spektroskopie liefert Erkenntnisse für die Entwicklung von widerstandslosen Stromtransportern bei Raumtemperatur

mehr
Mehr anzeigen

Die Sonne schickt mehr Energie auf die Erde, als die Menschheit benötigt. Forschende um Bettina Lotsch, Direktorin am Max-Planck-Institut für Festkörperforschung in Stuttgart, arbeiten an Materialien, die helfen sollen, dieses großzügige Angebot für viele Zwecke nutzbar zu machen – nicht nur für die Energiewende.

Darauf mussten Pianisten lange Zeit verzichten: das Tastengefühl, das ihnen Elfenbein gibt. Dieter Fischer, Sarah Parks und Jochen Mannhart, die am Max-Planck-Institut für Festkörperforschung in Stuttgart gewöhnlich quantenelektronische Phänomene erforschen, haben Abhilfe geschaffen – mit synthetischem Elfenbein. Nun will ein Start-up-Unternehmen das Material im großen Stil produzieren, und das nicht nur für Pianotasten.

Als Brillanten können sie ein betörendes Feuer versprühen, doch das reizt Jörg Wrachtrup weniger an den Edelsteinen. Der Physikprofessor an der Universität Stuttgart und Fellow am dortigen Max-Planck-Institut für Festkörperforschung arbeitet mit eher unscheinbaren Diamanten. Daraus entwickelt sein Team Sensoren, um die molekulare Maschinerie einer lebenden Zelle live zu beobachten. Von den Einblicken in die Nanowelt könnte auch die Medizin profitieren.

Die Nanoelektronik ist Verheißung und Herausforderung gleichermaßen. Denn in ihren winzigen Dimensionen zeigen Elektronen, die das Betriebsmittel elektronischer Bauteile bilden, manche exotischen Quanteneffekte. Ihr Verhalten in Nanostrukturen untersuchen die Wissenschaftler in Klaus Kerns Abteilung am Max-Planck-Institut für Festkörperforschung in Stuttgart mit extrem empfindlichen Methoden.

In kaum einen Stoff setzen Materialwissenschaftler so große Hoffnungen für die Elektronik der Zukunft wie in Graphen. Die Teams um Klaus Müllen, Direktor am Max-Planck-Institut für Polymerforschung in Mainz, und um Jurgen Smet, Gruppenleiter am Max-Planck-Institut für Festkörperforschung in Stuttgart, arbeiten daran, dass sich diese Hoffnungen erfüllen.

Druckbar, flexibel und preiswert - diese Eigenschaften versprechen Ingenieure sich von der organischen Elektronik. Wissenschaftler des Max-Planck-Instituts für Festkörperforschung und des Max-Planck-Instituts für Polymerforschung untersuchen verschiedene Materialien, aus denen sich rollbare Bildschirme oder billige Chips für Massenprodukte herstellen lassen.

International Officer / Personal Assistant (w/m/d)

Max-Planck-Institut für Festkörperforschung, Stuttgart 29. Januar 2024

Communication Manager (w/m/d)
 

Max-Planck-Institut für Festkörperforschung, Stuttgart 17. Januar 2024

Hochdruck-Synthese eines kationischen Perowskit-Supraleiters

2022 Kim, Minu; Wedig, Ulrich; Takagi, Hidenori

Chemie Festkörperforschung Materialwissenschaften Quantenphysik

Unter hohem Druck lassen sich Quantenmaterialien mit beispiellosen Eigenschaften synthetisieren. Das bei einem Druck von 12 GPa synthetisierte, im Perowskit-Typ kristallisierende Antimonat Ba1−xKxSbO3 (BKSO) wird bei einer Temperatur unterhalb von Tc = 15 K (x=0,65) supraleitend. Der verwandte Perowskit Ba1−xKxBiO3 (BKBO) weist sogar eine Sprungtemperatur von Tc = 30 K (x=0,40) auf. Beide Verbindungen unterscheiden sich in der Verteilung der Valenzelektronen auf die Kationen (Sb oder Bi) und die Liganden (O). In BKSO werden Hinweise auf kovalente Metall-Sauerstoff-Bindungsanteile gefunden. 

mehr

Das Ganze ist mehr als die Summe seiner Teile – neue Perspektiven auf komplexe Quantensysteme mit vielen Teilchen

2022 Schäfer, Thomas

Chemie Festkörperforschung Materialwissenschaften Quantenphysik

Das Hubbard-Modell ist das einfachste Modell zur Beschreibung von stark korrelierten Elektronensystemen. Dieses Modell ist jedoch nicht exakt lösbar. Eine neue numerische Perspektive, der sogenannte multi-method, multi-messenger Zugang, hat das Potential um zu neuen Erkenntnissen über die faszinierenden Hochtemperatur-Supraleiter zu führen und wurde bereits erfolgreich für bestimmte Parameterbereiche angewandt.

mehr

Lichtspeicherung mit Kohlenstoffnitriden: Von dunkler Photokatalyse zu Solarbatterien und lichtgetriebenen Mikroschwimmern

2021 Schlomberg, Hendrik; Kröger, Julia; Gouder, Andreas; Podjaski, Filip; Lotsch, Bettina Valeska

Chemie Festkörperforschung Materialwissenschaften Quantenphysik

Poly(heptazinimid), ein chemisch robustes und vielseitig einsetzbares Kohlenstoffnitrid, verfügt über einzigartige opto-elektronische und -ionische Eigenschaften. Diese erlauben die simultane Umwandlung und Speicherung von Sonnenlicht in ein und demselben Material. Von klassischer Photokatalyse über Photokatalyse im Dunkeln bis hin zu Sonnenbatterien, lichtgetriebenen Mikroschwimmern und neuartigen Sensoren – Kohlenstoffnitride sind materialchemische Allrounder und eröffnen neue Perspektiven im Grenzgebiet zwischen solarer Energiekonversion und elektrochemischer Energiespeicherung. 

mehr

Einstellung der Ladungsverteilung in ultra-dünnen Schichten mittels gezielter Variation der innere mechanischen Spannungen

2021 Wu, Yu-Mi; Suyolcu, Y. Eren; Kim, Gideok; Christiani, Georg; Wang, Yang; Keimer, Bernhard; Logvenov, Gennady; van Aken, Peter A.

Chemie Festkörperforschung Materialwissenschaften Quantenphysik

Durch mechanische Spannungen lassen sich die physikalischen Eigenschaften in oxidischen Heterostrukturen gezielt modifizieren. Hierzu haben wir La0.5Sr0.5MnO3-Schichten zwischen La2CuO4-Schichten eingebettet und diese auf unterschiedlichen Substraten aufgebracht. Dadurch konnten wir die mechanischen Spannungen innerhalb der LSMO-Schichten systematisch einstellen. Innerhalb der Schichten bestimmen wir die Ladungsverteilung atomar aufgelöst mittels der Elektronen-Energieverlust-Spektroskopie (EELS) und korrelieren diese mit Messungen der Leitfähigkeit sowie der magnetischen Eigenschaften. 

mehr

Neues vom Rand der Quantenwelt

2020 Boschker, Hans; Braak, Daniel; Bredol, Philipp; Mannhart, Jochen

Chemie Festkörperforschung Materialwissenschaften Quantenphysik

Der Grenzbereich zwischen der Quantenwelt und der Alltagswelt der klassischen Physik erlaubt dieRealisierung von Phänomenen und Bauelementen mit überraschenden, bahnbrechenden Eigenschaften und Funktionen. Die nicht-unitäre Quantenelektronik nutzt diesen Bereich, indem sie gezielt die Entwicklung von Quantenzuständen gemäß der Schrödinger-Gleichung mit Quantensprüngen, der Dekohärenz und dem Kollaps von Quantenwellen kombiniert. Entsprechende elektronische oder photonische Bauelemente verlassen den Rahmen bislang bekannter, grundlegender Gesetze der Physik.      

mehr
Zur Redakteursansicht