Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart

Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart

Die Wissenschaftler am Max-Planck-Institut für Intelligente Systeme in Stuttgart (vormals Max-Planck-Institut für Metallforschung) widmen sich der Materialwissenschaft. Sie interessiert unter anderem, wie Funktionen von Materialien auf der atomaren, nanoskopischen und mikroskopischen Längenskala ihr makroskopisches Verhalten bestimmen. Einen Schwerpunkt setzen sie dabei auf die Nanowissenschaft – sie erforschen etwa magnetische Materialien oder Flüssigkeiten im Nanomaßstab. Ein weiterer Schwerpunkt liegt auf dem Grenzgebiet zwischen der Nanotechnik und der Biologie, etwa dem Verhalten von Zellen auf verschiedenen Oberflächen. Viele der untersuchten Phänomene treten bei der Umwandlung von einem Zustand eines Materials in einen anderen oder an der Grenze zweier Materialien auf. Zu verstehen, was an solchen Grenzen geschieht, könnte helfen, Werkstoffe stabiler zu machen und ihnen gezielte Eigenschaften zu geben.

Kontakt

Heisenbergstr. 3
70569 Stuttgart
Telefon: +49 711 689-0
Fax: +49 711 689-1010

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):
IMPRS for Intelligent Systems

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren und Forschungsgruppenleitern.

Abteilung Theorie inhomogener kondensierter Materie mehr
Abteilung Moderne magnetische Systeme mehr
Abteilung Physische Intelligenz mehr
Abteilung Phasenumwandlungen, Thermodynamik und Kinetik mehr
Eine Teleskopschiene für Nanomaschinen
Mithilfe der DNA-Origami-Technik gefaltete Nanostäbe lassen sich mit Goldpartikeln als Zahnradmotoren gegeneinander verschieben mehr
Sechs Max-Planck-Wissenschaftler erhalten hohe EU-Förderung
Advanced Grants des ERC mit jeweils bis zu 2,5 Millionen Euro verliehen mehr
Milliroboter mit vielseitigem Bewegungstalent
Ein magnetischer Antrieb ermöglicht es einem winzigen Vehikel, durch eine komplexe Umgebung zu gehen, kriechen, springen und schwimmen mehr
Vielzweckgreifer haftet wie ein Gecko
Eine elastische Membran mit winzigen Noppen gepaart mit Unterdruck verleiht einem neuen Greifsystem hohe Haftkraft auch an gekrümmten Oberflächen mehr
Ein Filter für schweren Wasserstoff
Mit einer funktionalisierten Metall-organischen Gerüstverbindung (MOF) lassen sich Deuterium und Tritium relativ einfach von normalem Wasserstoff trennen mehr

So manche medizinische Behandlung wäre effizienter, wenn Medikamente mit einem winzigen Roboter direkt zum Krankheitsherd transportiert werden könnten. Peer Fischer und seine Mitarbeiter am Stuttgarter Max-Planck-Institut für Intelligente Systeme entwickeln Mikro- und Nanoschwimmer, die dies eines Tages ermöglichen sollen.

Für eine Magenspiegelung müssen Patienten heute meist noch den Schlauch eines Endoskops schlucken. Denn Kapseln mit Kameras, die dafür auch geeignet sind, lassen sich bislang nicht steuern. Das wollen Wissenschaftler um Metin Sitti, Direktor am Max-Planck-Institut für Intelligente Systeme in Stuttgart, ändern. Und ihre kleinen, kapselförmigen Roboter schießen nicht nur Bilder des Mageninneren.
Forscher testen neue Speicherlösungen für Wasserstofffahrzeuge.
Zur Person: Sylvie Roke
Momentan sind keine Angebote vorhanden.

Mikroroboter, die einem Patienten zur Hilfe eilen – eine durchaus realistische Vision. Künftig könnten Roboter der Größe einer einzelnen Zelle zuvor unzugängliche Körperbereiche erreichen. Jedoch ist deren Herstellung herausfordernd: Ist es möglich, solch ein autonomes, intelligentes System zu konstruieren, das selbst entscheidet, wann es wo im Körper aktiv wird, und dabei kleiner als ein Millimeter ist? Ein medizinischer Eingriff mittels eines Mikroroboters wäre der Inbegriff einer minimalinvasiven Behandlung. Er wäre, ohne dem Patienten zu schaden, beliebig wiederholbar – eine Revolution.

mehr

Biomechanik und Bewegungskontrolle der Lokomotion in Tieren und Robotern

2017 Spröwitz, Alexander (korrespondierender Autor); Heim, Steve
Materialwissenschaften

Tiere laufen dynamisch und effizient, elegant und adaptiv. Ihre Fortbewegung kann als ein sorgfältig orchestriertes Zusammenspiel des Bewegungsapparates verstanden werden, der mit seiner Umgebung interagiert. Die Forschungsgruppe "Dynamische Lokomotion" am Max-Planck-Institut für Intelligente Systeme in Stuttgart verfolgt das Ziel, mit neuen Methoden und Werkzeugen der Laufrobotik die Lokomotion von Tieren zu verstehen.

mehr

Grenzflächenkontrollierte Phänomene in Nanomaterialien

2016 Mittemeijer, Eric J.; Wang, Zumin
Materialwissenschaften

Materialien im Nanometerbereich haben eine außergewöhnlich große interne Grenzflächendichte. Eine Reihe von zuvor unbekannten Phänomenen in Nanomaterialien wurde enthüllt, die grundsätzlich auf die vorhandenen Grenzflächen zurückzuführen sind. So wurden ungewöhnlich große und kleine Gitterparameter in nanokristallinen Metallen, Quanten-Spannungsoszillationen in wachsenden Nanoschichten und außerordentlich hohe Mobilitäten von Atomen bei sehr tiefen Temperaturen beobachtet und erklärt. Das dabei gewonnene Verständnis kann zu neuen Anwendungen von Nanomaterialien in Spitzentechnologien führen.

mehr

Der kleinste von Menschen geschaffene Nano-Motor

2015 Sánchez, Samuel
Chemie Materialwissenschaften

Winzig kleine Motoren, die sich selbst antreiben, durchs Abwasser sausen und dieses so ganz nebenbei auch noch reinigen oder kleine Roboter, die mühelos durch das Blut schwimmen und so vielleicht eines Tages Medikamente ganz gezielt an eine bestimmte Körperstelle transportieren – was klingt wie die Vision aus einem Science Fiction Film, das lässt Samuel Sánchez in seinem Labor am Max-Planck-Institut für Intelligente Systeme in Stuttgart bereits Wirklichkeit werden. Selbst angetriebene Mikro-Nanoroboter und integrierte Sensoren in Mikro-Chips: Das ist das Thema von Sánchez` Forschungsgruppe.

mehr
Lebende Organismen haben eine sehr wirksame Methode, überflüssige oder potenziell gefährliche Zellen zu zerstören: den programmierten Zelltod. Wissenschaftler um Ana García-Sáez interessieren sich für die der Apoptose zugrunde liegenden Prozesse, insbesondere für ein Protein namens Bax, welches Poren in der äußeren Mitochondrienmembran öffnet und damit den programmierten Zelltod unabwendbar einleitet. Die gewonnenen Erkenntnisse sollen bei der Entwicklung neuer Medikamente für die Bekämpfung von Krebs helfen, da Krebszellen meistens für diese Art des Zelltods desensibilisiert sind. mehr
Zur Redakteursansicht