Max Planck Institute for Intelligent Systems, Stuttgart site

Max Planck Institute for Intelligent Systems, Stuttgart site

The scientists at the Max Planck Institute for Intelligent Systems (formerly: Max Planck Institute for Metals Research) dedicate their efforts to the material sciences. Their interests include, among other things, how the functioning of materials determines the atomic, nanoscopic and microscopic scale of their macroscopic behaviour. To this end, one of their main fields of research is nanoscience – the scientists investigate magnetic material and fluids on the nanoscale, for example. A further focus of their research is the interface between nanotechnology and biology, such as the behaviour of cells on different surfaces. Many of the phenomena being investigated occur when a material is converted from one state into another or at the interface between two materials. Understanding what happens at such interfaces could help create materials which are more stable and invest them with targeted properties.


Heisenbergstr. 3
70569 Stuttgart
Phone: +49 711 689-0
Fax: +49 711 689-1010

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS for Intelligent Systems

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Theory of Inhomogeneous Condensed Matter


Department Modern Magnetic Systems


Department Physical Intelligence


Department Phase Transformations, Thermodynamics and Kinetics

Scientific highlights 2019

Scientific highlights 2019

December 20, 2019

Many publications by Max Planck scientists in 2019 were of great social relevance or met with a great media response. We have selected 15 articles to present you with an overview of some noteworthy research of the year.

A new concept for self-assembling micromachines

Polarisable microrobots components can be designed to find each other in an electric field

The rise of the robot jellyfish

A swimming device just a few millimetres long uses a magnetic drive to propel movement modelled on baby jellyfish

Six Max Planck researchers land lucrative EU funding

ERC awards Advanced Grants worth up to 2.5 million euros each.

Millirobot with a talent for versatility of movement

A magnetic drive allows a tiny untethered vehicle to walk, crawl, jump and swim through a complex environment


Some medical treatments would be more efficient if medication could be transported via a tiny robot directly to the diseased area. Peer Fischer and his colleagues at the Max Planck Institute for Intelligent Systems in Stuttgart are developing microswimmers and nanoswimmers that are expected to one day make this possible.

Gastroscopy usually requires patients to swallow an endoscope tube. Although camera-carrying capsules are also suitable for the task, it is still not possible to control them. Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart plan to change all that. And their tiny capsule-shaped robots can do a lot more than merely take snapshots of the stomach’s interior.

Computers today serve as a jukebox, movie archive and photo album, and must thus provide fast access to ever-larger amounts of data. Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart and the Halle-based Max Planck Institute of Microstructure Physics are paving the way for magnetic storage materials that make this possible, cleverly taking advantage of the unique laws of the nanoworld.

Personal Portrait: Sylvie Roke - The experiments for her doctoral studies did not work out quite as planned the first time around. After switching gears and continued work, however, Sylvie Roke opened up a completely new perspective on soft matter. At the Max Planck Institute for Metals Research, she also uses this method to investigate potential new drugs and biological materials.

Hydrogen could make driving a car cleaner – but there are currently no suitable storage materials for the gas. Researchers at the Max Planck Institute of Metals Research, the Max-Planck-Institut für Kohlenforschung (coal research) and the Max Planck Institute of Colloids and Interfaces are investigating the candidates for a hydrogen tank.

Technical Assistant (f/m/d)

Max Planck Institute for Intelligent Systems, Stuttgart site, Stuttgart May 25, 2020

Student Research Assistant (m/f/d)

Max Planck Institute for Intelligent Systems, Stuttgart site, Stuttgart February 28, 2020

Nanorobots propel through the eye

2018 Zhiguang Wu, Jonas Troll, Hyeon-Ho Jeong, Qiang Wei, Marius Stang, Focke Ziemssen, Zegao Wang, Mingdong Dong, Sven Schnichels, Tian Qiu, Peer Fischer

Cell Biology Material Sciences Solid State Research Structural Biology

Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart developed specially coated nanometer-sized robots that could be moved actively through dense tissue like the vitreous of the eye. So far, the transport of such nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. Our work constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.


Microrobots to the rescue! Miniature robots the size of around a single cell have the prospect of transforming medical therapy, as they are able to access enclosed spaces, making previously inaccessible body parts accessible, allowing for a minimally invasive diagnosis and treatment. However, it is difficult to construct a microrobot. Questions are: can the researchers create medical robots that decide themselves when to take action inside the body? How can they build such an autonomous, intelligent system at the sub-millimeter scale? A great challenge, that the scientists pursue with passion.


Biomechanics and Locomotion Control in Legged Animals and Legged Robots

2016 Spröwitz, Alexander (korrespondierender Autor); Heim, Steve

Material Sciences

An animal's running gait is dynamic, efficient, elegant, and adaptive. We see locomotion in animals as an orchestrated interplay of the locomotion apparatus, interacting with its environment. The Dynamic Locomotion Group at the Max Planck Institute for Intelligent Systems in Stuttgart develops novel legged robots to decipher aspects of biomechanics and neuromuscular control of legged locomotion in animals, and to understand general principles of locomotion.


Interface-controlled phenomena in nanomaterials

2015 Mittemeijer, Eric J.; Wang, Zumin

Material Sciences

Nanosized material systems characteristically exhibit an excessively high internal interface density. A series of previously unknown phenomena in nanomaterials have been disclosed that are fundamentally caused by the presence of interfaces. Thus anomalously large and small lattice parameters in nanocrystalline metals, quantum stress oscillations in growing nanofilms, and extraordinary atomic mobility at ultralow temperatures have been observed and explained. The attained understanding for these new phenomena can lead to new, sophisticated applications of nanomaterials in advanced technologies.


The smallest human-made nano-motor

2014 Sánchez, Samuel

Chemistry Material Sciences

Tiny self-propelled motors which speed through the water and clean up pollutions along the way or small robots which can swim effortlessly through blood to one day transport medication to a certain part of the body – this sounds like taken from a science fiction movie script. However, Samuel Sánchez is already hard at work in his lab at the Max Planck Institute for Intelligent Systems in Stuttgart to make these visions come true. Self-propelled micro-nanorobots and the usage as integrated sensors in microfluid-chips: that’s the topic of Sánchez` research group.

Go to Editor View