Quantenzauber im künstlichen Kristall

17. Juni 2013

Effekte der Quantenphysik zeugen nicht nur von der Exotik der Mikrowelt, sie ermöglichen auch völlig neue Ansätze, etwa in der Informationsverarbeitung. Um sie besser zu verstehen, simuliert das Team von Immanuel Bloch, Direktor am Max-Planck-Institut für Quantenoptik in Garching, Quantensysteme mit Atomen in optischen Gittern – und beobachtet dabei immer wieder ein Verhalten der Materie, das unseren Alltagserfahrungen widerspricht.

Text: Christian Meier

Optische Maßarbeit: Spiegel leiten das Licht der Laser (blaue Kisten) durch zahlreiche Instrumente wie Strahlteiler oder akustooptische Modulatoren zu optischen Fasern (blaue und gelbe Kabel). Auf diese Weise wird, je nach Experiment, Licht mit der nötigen Frequenz und Intensität erzeugt.

Ein dichter Wald aus münzgroßen Spiegeln, Linsen, Laserstrahlen und Glasfaserkabeln steht auf dem Labortisch am Max-Planck-Institut für Quantenoptik in Garching bei München. Einige Jahre hat allein der Aufbau die Forscher beschäftigt, und das Team um den Quantenphysiker Immanuel Bloch betreibt sogar mehrere solcher Experimente. Der Aufwand hat sich schon gelohnt. Blochs Forschungsresultate schaffen es meist dorthin, wo alle Wissenschaftler am liebsten publizieren möchten: in die Fachzeitschriften SCIENCE und NATURE. Ein Wunder ist das nicht, denn tief im Innern ihrer Experimente, im Vakuum und bei wenigen milliardstel Kelvin über dem absoluten Temperaturnullpunkt, erzeugen die Forscher etwas völlig Neues. Sie bringen Atome dazu, sich zu einer Art künstlicher Materie zu verbinden. Anders ausgedrückt: Hier entstehen Modellkristalle, die Phänomene hervorbringen, wie sie in realen Festkörpern nur schwer oder noch überhaupt nicht zu beobachten sind.

Da entstehen negative absolute Temperaturen, riesige „Superatome“ ordnen sich zur gleichen Zeit am gleichen Ort in verschiedenen Mustern, fast so, als gäbe es die grundverschiedenen Kohlenstoffformen Graphit und Diamant in einem einzigen Kristall; oder Atome vollführen eine Art Pferderennen, bei dem es mehr Schnelle als Mittelschnelle und Langsame gibt.

Die Exotik der Phänomene liegt in der Quantenmechanik begründet, deren manchmal bizarr anmutenden Regeln sie gehorchen. Die Garchinger Physiker haben in den letzten zehn Jahren gelernt, der Quantenmechanik sozusagen bei der Arbeit zuzusehen. Sie beobachten, wie sich die einzelnen Atome des künstlichen Kristalls anordnen oder bewegen, und lernen dabei viel über Quantenmaterie. Darunter verstehen sie Systeme von vielen miteinander wechselwirkenden Quantenteilchen.

Die Forscher nähern sich damit einer Vision des US-Physikers Richard Feynman, der sich vor dreißig Jahren fragte, wie Computer hoch komplizierte Probleme der Quantenphysik lösen können. Mit herkömmlichen Computern gelingt das oft nur, indem man die Realität in Modellen stark vereinfacht. So sinkt der Rechenaufwand deutlich und kann von Supercomputern bewältigt werden. Das ist etwa der Fall bei der Berechnung der elektronischen Eigenschaften eines Festkörpers. Die bestimmen, ob und wie sich die Elektronen in seinem Innern bewegen, und damit auch, ob es sich also um einen Leiter, Halbleiter oder Supraleiter handelt.

In realen Festkörpern beeinflusst die Bewegung jedes einzelnen der Myriaden von Elektronen die Bewegungen aller anderen. Ähnlich wie Menschen in einem Aufzug: Will etwa eine im hinteren Teil der Kabine stehende Person aussteigen, müssen ihr alle anderen aus dem Weg gehen. So ergibt sich beim Versuch, die Bewegungen der unzähligen Elektronen in einem Material zu beschreiben, eine völlig unüberschaubare Komplexität. Daher vereinfachen Modelle die Situation: Sie nehmen an, dass jedes Elektron die anderen wie ein gleichbleibendes Hintergrundfeld wahrnimmt, das einen einzigen ruhenden Wechselwirkungspartner darstellt.

Ein Quantensimulator kann Supercomputer ausstechen

Einem Eierkarton ähnelt das optische Gitter, das Immanuel Bloch und sein Team aus überlagerten Laserstrahlen erzeugen, weil sich darin Stellen unterschiedlich intensiven Lichts periodisch abwechseln.

Doch diese Näherung ist oftmals unrealistisch. Und das ausgerechnet bei technisch interessanten Festkörpern wie den sogenannten Hochtemperatursupraleitern. Diese verlieren den elektrischen Widerstand bei relativ hohen Temperaturen von etwa minus 130 Grad Celsius. Wenn Physiker erst einmal verstehen, was mit dem System aus Elektronen bei diesem Übergang passiert, so die Hoffnung, lässt sich ein Supraleiter entwickeln, der bei Raumtemperatur Strom verlustfrei leitet. Ein verlustarmes Stromversorgungssystem wäre dann keine Science-Fiction mehr.

Science-Fiction bleibt es aber sicher auf unabsehbare Zeit, das quantenmechanische Verhalten der Myriaden von Elektronen in einem solchen Supraleiter exakt zu berechnen. Da dann viele Näherungen nicht gelten, müsste simuliert werden, wie jedes einzelne der Elektronen von jedem anderen Elektron beeinflusst wird – und das unter den komplexen Regeln der Quantenmechanik. Schon um dieses unüberschaubare Beziehungsnetzwerk für ein paar Hundert Elektronen zu erfassen, wäre ein Supercomputer mit mehr Speicherzellen nötig, als es Protonen im Universum gibt.

Feynman, unter Physikern berühmt für seine verständlichen Vorlesungen und kühnen Visionen, hatte eine Idee, das Problem zu lösen. Er schlug vor, schwierig zu beobachtende Quantensysteme mit solchen zu simulieren, die leichter zu studieren sind, sich jedoch analog zum Vorbild verhalten und rätselhafte Phänomene erklären können.

Vergleichbar ist das mit dem Vorgehen von Luftfahrtingenieuren, die die Aerodynamik eines geplanten Flugzeugs verstehen wollen. Sie bauen ein Modell und stellen es in einen Windkanal, wo sie die Luftströmungen bequem vermessen können. Dank der Analogie zwischen dem Modell und dem größeren Original können sie Messergebnisse von dem einen auf das andere übertragen. Quantensimulator nannte Feynman ein Modell der Quantenmaterie. Immanuel Bloch und sein Team haben gezeigt, dass ein Quantensimulator bei bestimmten Aufgaben tatsächlich Supercomputer ausstechen kann – doch davon später.

Irgendwo in den Tiefen des Waldes aus Linsen, Spiegeln, optischen Fasern und Lasern sitzt das Herz eines Experimentes – eine Vakuumkammer, die ein sogenanntes optisches Gitter enthält. In diesem befinden sich Tausende von Rubidiumatomen. „Das Experiment ist wartungsfrei“, antwortet lächelnd Christian Groß, einer der wissenschaftlichen Mitarbeiter Blochs, auf die Frage, ob man an die Vakuumkammer überhaupt noch herankomme, ohne den filigranen optischen Aufbau zu stören.

Das Herz des Experiments: In der gläsernen Vakuumzelle erzeugen die Physiker aus Rubidiumatomen ein Bose-Einstein Kondensat (BEK). Die Atome sind im Feld von Magnetspulen gefangen, von denen eine in der unteren Bildhälfte zu sehen ist. Das BEK laden die Forscher für weitere Experimente in einen künstlichen Kristall aus Licht – ein sogenanntes optisches Gitter.

Im Innern der Kammer kreuzen sich Laserstrahlen. Bei der Überlagerung löschen sich die Lichtwellen an bestimmten Orten aus, während sie sich an anderen verstärken, wodurch helle und dunkle Bereiche entstehen. Die Rubidiumatome werden in die Kammer geladen und anschließend von den elektromagnetischen Kräften des Laserlichtes zu den hellen, manchmal auch zu den dunklen Stellen gezogen und kommen dort zu liegen wie Eier in einem Eierkarton. Anders als Eier können die Atome aber zwischen den Mulden des optischen Eierkartons hin und her hüpfen. Denn die Quantenmechanik erlaubt ihnen, durch eine Energiebarriere zu tunneln, auch wenn ihre Energie dafür eigentlich nicht ausreicht.

Das Besondere: Die Atome bilden ein System miteinander wechselwirkender Quantenteilchen, von denen sich jedes einzelne beobachten lässt. Erkennen lassen sie sich, weil der Abstand zwischen den Mulden des Eierkartons mit etwa 0,5 Mikrometern – ein Mikrometer ist ein tausendstel Millimeter – rund 10 000-mal größer ist als der Abstand von Atomen in einem Festkörper. Es handelt sich also um ein tausendfach vergrößertes Modell eines Kristalls. Indem die Forscher die Atome zum Leuchten anregen, können sie das gesamte System mithilfe eines speziell entwickelten, hochauflösenden Lichtmikroskops abbilden.

Dass sich die Atome trotz der großen Abstände wie ein System vieler Quantenteilchen verhalten, liegt an der extrem tiefen Temperatur des Atomensembles. Der Quantenmechanik zufolge weist jedes Teilchen auch Eigenschaften einer Welle auf. Die Länge dieser Materiewelle wächst mit sinkender Temperatur. Dadurch dehnt sich die Materiewelle so weit aus, dass sie etwa so lang wird wie der Abstand zwischen den Atomen. Da die Materiewellen einander überlappen, verschmelzen die Atome sozusagen zu einem einzigen Quantensystem.

„Das Tolle an diesem Modellsystem ist, dass wir nahezu alle Eigenschaften der Atome kontrollieren können, indem wir etwa die Stärke der Wechselwirkungen zwischen den Atomen gezielt variieren“, sagt Immanuel Bloch. Letzteres geschieht einfach durch das Anlegen eines äußeren Magnetfeldes. Damit können die Forscher sowohl anziehende als auch abstoßende Wechselwirkungen zwischen den Atomen einstellen. So erhält der Quantensimulator eine erste Stellschraube, mit der er sich in gewissem Maße quasi programmieren lässt.

Eine weitere Stellschraube gibt den Physikern die Intensität der Laserstrahlen in die Hand. Sie bestimmt die Tiefe der Mulden des optischen Eierkartons. Je tiefer, also je stärker die Laserstrahlen, desto weniger neigen die Atome dazu, von einer Mulde in eine benachbarte zu hüpfen.

„Das Verhältnis zwischen der Stärke der Wechselwirkung und der Tendenz, von Mulde zu Mulde zu wechseln, ist oft der alles bestimmende Parameter in diesen Modellsystemen“, sagt Bloch. Sein Team kann darüber die Quantenmaterie nach Gusto variieren. Es kann somit eine ganze Anzahl von Phänomenen simulieren, die auf dem komplexen Wechselspiel der Teilchen beruhen.

Aber sind darunter Phänomene, die sich auch in wirklichen Festkörpern finden? Ist das Modell realitätsnah? Das hat Bloch mit seinem damaligen Team schon vor über zehn Jahren gezeigt, als frisch promovierter Nachwuchsgruppenleiter beim späteren Nobelpreisträger Theodor W. Hänsch an der Ludwig- Maximilians-Universität München.

Schnappschüsse aus dem Zirkus der Quantenteilchen

Temperatur lässt sich auch über die Verteilung von Teilchen auf die Energiezustände definieren: Bei positiver absoluter Temperatur T ist die Zahl n der Teilchen mit niedriger Energie E größer als die Teilchenzahl mit hoher Energie (erste und zweite Säule von links). Am absoluten Nullpunkt (null Kelvin [K]) versammeln sich alle Teilchen in den niedrigsten Zuständen. Im hypothetischen Fall einer unendlich hohen Temperatur in einem System mit einer Maximalenergie verteilen sich die Teilchen gleichmäßig über alle Zustände (mittlere Säule). In solchen Systemen mit einer oberen Energie schranke ist es im Prinzip möglich, mehr Teilchen in Zustände mit hoher als mit niedriger Energie zu bringen (erste und zweite Säule von rechts). Ein System mit einer negativen absoluten Temperatur muss als heißer aufgefasst werden als ein System mit unendlich hoher positiver Temperatur, denn bei einem Wärmekontakt zwischen einem System positiver und einem System negativer absoluter Temperatur fließt Wärme immer vom System mit negativer Temperatur hin zu dem mit positiver Temperatur.

Als Vorbild aus der Natur dienten bestimmte Metalloxide, die theoretisch elektrisch leiten sollten, sich experimentell aber als Isolatoren erweisen. Oder sie verwandeln sich von einem Isolator in einen elektrischen Leiter, wenn sie Druck ausgesetzt werden. Nach dem britischen Physik-Nobelpreisträger Sir Nevill Francis Mott (1905 bis 1996), der sich mit solchen Stoffen befasste, werden sie Mott-Isolatoren genannt. Die Elektronen in einem Mott-Isolator stoßen einander so stark ab, dass ihre Bewegung einfriert, sie blockieren sich gegenseitig wie Autos in einem Stau. Viele Physiker glauben, dass die Hochtemperatursupraleitung aus einem elektronischen Mott-Isolator hervorgeht.

Bloch und seine Kollegen haben damals mit Atomen in einem optischen Gitter den Übergang von einer sogenannten Supraflüssigkeit zu einem Mott-Isolator simuliert. Supraflüssigkeiten treten bei Temperaturen nahe dem absoluten Temperaturnullpunkt auf. Es gehen dann alle Atome in den gleichen – den niedrigsten – Energiezustand über und verschmelzen dadurch zu einer Art Superteilchen. Dieses verhält sich wie eine Flüssigkeit mit bizarren Eigenschaften: Sie zeigt absolut keine Zähflüssigkeit und kann deshalb über Gefäßwände kriechen oder verbleibt bei langsamem Rühren vollkommen in Ruhe. Im optischen Gitter wird dieser supraflüssige Zustand durch Atome realisiert, die von einem Gitterplatz zum anderen springen: Keines von ihnen ist daher einem bestimmten Gitterplatz zuzuordnen, ihre Individualität geht so verloren.

Bloch und sein Team verringerten damals die Tendenz der Atome, zwischen den Gitterplätzen zu springen, so weit, dass die Abstoßung zwischen ihnen überwog. Ganz plötzlich stellte sich dann eine neue Ordnung im System ein, in der auf jedem Gitterplatz genau ein Atom saß. Ähnliches passiert, wenn ein Metalloxid seine Leitfähigkeit verliert und zum Mott Isolator wird: Die freie Beweglichkeit der Elektronen wird durch stärker werdende Abstoßung der Elektronen untereinander eingefroren.

Blochs Garchinger Team schoss Bilder der Atome im optischen Gitter vor und nach dem Übergang. Dazu bringen die Forscher die einzelnen Atome im Kristall zum Leuchten. Jedes Atom wirkt dann wie eine kleine mikroskopische Glühbirne, deren Licht mit einem Mikroskopobjektiv aufgenommen werden kann. Während im suprafluiden Materiezustand ein Durcheinander der Atome im Lichtkristall zu erkennen ist, verteilen sich die Atome im Mott-Isolator völlig regelmäßig in dem optischen Eierkarton.

„Schnappschüsse“ nennt Bloch die Momentaufnahmen des komplexen Zirkus aus Quantenteilchen und erinnert sich an die Worte eines staunenden Kollegen, der Fotos von den Positionen einzelner Atome in einem Vielteilchensystem bislang als Science-Fiction angesehen habe. „Das Experiment hat ein neues Forschungsfeld eröffnet“, sagt Bloch stolz. „Das Gebiet ist in den letzten Jahren richtiggehend explodiert, sehr viele Gruppen weltweit arbeiten heute mit ultrakalten Atomen in optischen Gittern.“

Seither hat Blochs Team die Kontrolle über das Quantensystem ständig erhöht, also seinem Quantensimulator weitere Stellschrauben hinzugefügt. Indem die Forscher daran drehen, stimulieren sie die Quantenmaterie zu physikalischen Kunststücken. Jüngst etwa haben die Forscher sie dazu gebracht, Temperaturen unter dem absoluten Nullpunkt, der bei minus 273,15 Grad Celsius liegt, anzunehmen.

Heißer als eine unendlich hohe absolute Temperatur

Rätselhaften Quantenphänomenen auf der Spur: Immanuel Bloch, Marc Cheneau und ihre Kollegen erforschen mit den leicht zu beobachtenden Atomen im optischen Gitter unbekannte Quantenphänomene.

Bei negativen absoluten Temperaturen ist die normale Temperaturverteilung der Teilchen auf den Kopf gestellt: Bei positiven Temperaturen befinden sich mehr Teilchen in Zuständen mit niedriger Energie als in energetisch höher liegenden Zuständen; erst bei unendlich hoher Temperatur verteilen die Teilchen sich über alle energetischen Zustände gleich. Bei negativer Temperatur sind die Zustände hingegen desto stärker besetzt, je energiereicher sie sind. Materie mit negativer absoluter Temperatur ist daher nicht kälter als der absolute Temperaturnullpunkt, sondern heißer als ein System mit unendlich hoher positiver Temperatur. Das äußert sich auch darin, dass bei einem Kontakt zwischen einem Material mit positiver und einem Material mit negativer Temperatur Wärme immer vom System negativer Temperatur zum System mit beliebig hoher positiver Temperatur fließt.

Damit energetisch höher liegende Zustände stärker besetzt sein können als energetisch niedrig liegende, müssen die Forscher die Energie der Atome nach oben beschränken. Dies ist bei freien Teilchen im Raum nicht möglich, da die Bewegungsenergie der Atome beliebig hohe Werte annehmen kann. Bei Atomen im optischen Gitter lässt sich dies jedoch erzielen.

Indem die Garchinger Forscher die Intensität des Laserlichtes in einer ausgefeilten Sequenz variierten und die Wechselwirkung zwischen den Atomen im richtigen Moment von anziehend auf abstoßend umschalteten, erreichten sie, dass eine Mehrzahl der Atome sich an einer oberen Energiegrenze versammelte und dort auch blieb. Sie maßen die Energieverteilung der Atome und fanden, dass sie einer negativen absoluten Temperatur von einigen milliardstel Kelvin entsprach.

Doch nicht nur zum Erzeugen neuartiger Materiezustände eignen sich Atome in optischen Gittern. Das Team nutzt diese Plattform auch, um zu erforschen, wie die Gesetze der Quantenmechanik einzelne Teilchen durch den künstlichen Kristall lenken. „Im realen Festkörper wäre es unmöglich, die Bewegung einzelner Elektronen zu verfolgen“, betont Bloch. In den künstlichen Kristallen zeigen Schnappschuss-Sequenzen die Bewegung der Atome hingegen wie in einem Film.

Und dabei trat ein merkwürdiger Effekt auf, als die Forscher eine Art Wettrennen mit Atomen im optischen Gitter veranstalteten. Hierfür benutzten sie weitere Stellschrauben, die parallele Längsbahnen in das optische Gitter prägen. In jede der Bahnen, aus denen Atome nicht ausbrechen können, setzten die Physiker entlang einer Startlinie jeweils nur ein Atom und ließen die Teilchen die Bahn entlanglaufen. Das Ergebnis überraschte sie. Denn die meisten Atome waren mit besonders flottem Tempo unterwegs, Mittelfeld und Schluss waren nur dünn besetzt. Wie sich bei einem Marathon sehr gut beobachten lässt, bewegen sich die meisten menschlichen Läufer dagegen gewöhnlich im Mittelfeld, während nur wenige vorneweg und hinterher laufen.

„Quantenmechanische Transportphänomene kann man in unserem System wunderbar orts- und zeitaufgelöst verfolgen“, sagt Bloch. „Gerade solche dynamischen Fragestellungen gehören zu der Kategorie jener Probleme, die sich in komplexeren Situationen heute selbst auf den besten Supercomputern nicht lösen lassen.

Ein Quantenstift schreibt in den künstlichen Kristall

Die Schrift des Quantenstifts: Mit einem Laser regen die Garchinger Physiker in verschiedenen Mustern gezielt einzelne Atome des Quantengases im optischen Gitter an. Die angeregten Atome machen sie in einem hochauflösenden Mikroskop sichtbar.

Für manche Probleme ist Feynmans Vision vom Quantensimulator, der jeden Superrechner aussticht, also schon Realität. Und selbst einer noch ambitionierteren Vision könnten Atome in optischen Gittern auf die Sprünge helfen: dem Quantencomputer. Dabei handelt es sich im Gegensatz zum Quantensimulator, der bestimmte physikalische Probleme simuliert, um einen frei programmierbaren Rechner für verschiedene Aufgaben – auch für Alltagsprobleme wie das Durchsuchen riesiger Datenbanken. Er nutzt die Parallelexistenz verschiedener Möglichkeiten in der Quantenmechanik. Die erlaubt es im Prinzip, alle Lösungsmöglichkeiten für eine Aufgabe gleichzeitig zu testen und somit wesentlich schneller zum Ziel zu kommen als ein normaler Computer. Verschiedene Quantensysteme werden derzeit als vielversprechende Kandidaten für einen Quantencomputer gehandelt. Etwa aufgereihte Ionen oder supraleitende Leiterschleifen.

Das hohe Maß an Kontrolle, das die Garchinger Physiker über die Atome in optischen Gittern gewonnen haben, reiht auch dieses System unter die aussichtsreichen Kandidaten für einen Quantencomputer ein. Denn nur wer das Quantensystem beherrscht, kann es auch zum Rechnen nutzen. Das Garchinger Team hat bereits bewiesen, dass es Information mit einer Art Quantenstift gezielt in einzelne Atome hineinschreiben und wieder aus ihnen herauslesen kann, ähnlich wie sich auch jede Speicherzelle eines herkömmlichen Computers ansprechen lässt. Mit einem Laser haben die Forscher die Spins bestimmter Atome – der Spin entspricht, vereinfacht gesagt, dem Drehsinn eines Atoms – von der einen Richtung in die andere gedreht.

Neben der Fähigkeit, Information gezielt in die künstlichen Kristalle schreiben zu können, sieht Bloch noch einen Grund, warum sich das Quantengas im optischen Gitter als Quantencomputer eignet: die sogenannte Skalierbarkeit. Bislang gibt es lediglich rudimentäre Quantencomputer, die triviale Aufgaben lösen und etwa die Zahl 15 in ihre Primfaktoren 5 und 3 zerlegen. Für richtig harte Nüsse, beispielsweise um riesige Zahlen in Primzahlen zu zerlegen, wie es in der Verschlüsselungstechnik notwendig ist, reicht die Rechenkraft der einfachen Systeme nicht. Dafür müsste ein Quantencomputer aus Hunderten oder Tausenden miteinander zu einem Quantensystem verbundenen – verschränkten – Teilchen bestehen. Bislang gibt es aber nur Systeme mit einigen wenigen verschränkten Teilchen.

Sie auszubauen gilt als sehr schwierig, weil sich Quantensysteme desto schlechter kontrollieren lassen, je größer sie sind. Es fällt dann immer schwerer, das quantenmechanische Verhalten des Systems, das für die Rechnung benötigt wird, zu erhalten. „Bei uns dagegen wäre die Skalierbarkeit natürlich gegeben“, sagt Bloch. Dass die Physiker Tausende Atome im optischen Gitter kontrollieren können, haben sie schon bewiesen. Sehr viele Atome ließen sich im optischen Gitter relativ leicht über gegenseitige Stöße miteinander verschränken, betont Bloch. Es ist also denkbar, dass die optischen Gitter einmal zu so etwas wie den Prozessoren solcher Rechner werden.

Doch dahin ist der Weg noch weit – Experten erwarten einen Quantencomputer erst in mehreren Jahrzehnten. Das nahe Ziel von Blochs Team ist vielmehr, in ihrer künstlichen Materie weitere neue Phänomene zu entdecken und ungelöste Fragen der Festkörperphysik und aus anderen Bereichen der Physik zu beantworten.

Derzeit arbeiten die Physiker daran, die Atome im optischen Gitter dem realen Festkörper noch ähnlicher zu machen. Zwischen den Rubidiumatomen im optischen Gitter und den Elektronen im Festkörper gibt es nämlich einen fundamentalen Unterschied. Erstere gehören zur Teilchenklasse der Bosonen, Letztere zu der der Fermionen. Fermionen können im Gegensatz zu Bosonen nicht am gleichen Ort den gleichen Quantenzustand annehmen, verhalten sich im optischen Gitter aus diesem Grund anders. Blochs Team führt bereits erste Experimente mit fermionischen Kaliumatomen im optischen Gitter durch. Nun arbeitet es daran, Schnappschüsse auch von diesem Fermionensystem zu machen.

Darüber hinaus wollen die Forscher Moleküle in optischen Gittern untersuchen. Moleküle, die einen elektrischen Plus- und Minuspol haben, wechselwirken über mehrere Mulden im Eierkarton hinweg, was die elektrisch neutralen Atome nicht tun. „Wir erwarten davon weitere völlig neuartige Materiezustände“, sagt Immanuel Bloch. Auch künftig werden er und sein Team also überraschende Einsichten in den Quantenkosmos gewinnen.

Auf den Punkt gebracht

● Die Eigenschaften vieler Quantensysteme, wie etwa der Hochtemperatursupraleiter, lassen sich mit herkömmlichen Computern nicht berechnen, weil deren Kapazität oft nicht ausreicht, um die komplexen Wechselwirkungen etwa in Festkörpern zu erfassen.

● Atome in optischen Gittern dienen als Quantensimulatoren, in denen sich komplexe Quantenphänomene unter kontrollierten Bedingungen studieren lassen und Modelle für reale Materialien überprüft werden können.

● In einem künstlichen Kristall lässt sich eine negative absolute Temperatur realisieren oder der Ladungstransport in Festkörpern untersuchen.

● Ein System aus Atomen im optischen Gitter gilt als ein Kandidat für einen universellen Quantencomputer.

GLOSSAR

Bosonen und Fermionen: Die Quantenmechanik teilt alle Teilchen, sowohl Elementarteilchen wie Elektronen als auch zusammengesetzte Teilchen wie Protonen oder Atome, in Bosonen und Fermionen ein. Bosonen eines Systems durfen identische Quantenzustände annehmen, Fermionen dürfen das nicht. Daher werden sie mathematisch unterschiedlich behandelt.

Optisches Gitter: Das optische Gitter hat in der Physik verschiedene Bedeutungen. Hier sind damit Laserstrahlen gemeint, die so überlagert werden, dass sich ihre elektromagnetischen Wellen in einem periodischen Muster verstärken und abschwächen. An den Stellen mit besonders hoher oder niedriger Intensität lassen sich Atome in mikroskopischen, laserpinzettenartigen Lichtfallen fangen.

Verschränkung: Quantenteilchen lassen sich, etwa durch spezielle Wechselwirkungen untereinander oder vermittelt durch Licht, miteinander verschränken. Die Teilchen sind dann bezogen auf eine Eigenschaft voneinander abhängig, egal wie weit sie sich räumlich voneinander entfernen. Bei zwei bezüglich der Schwingungsrichtung des Lichts verschränkten Photonen zum Beispiel legt eine entsprechende Messung an einem der Lichtteilchen augenblicklich auch die Schwingungsrichtung am zweiten Photon fest, ohne dass zwischen beiden ein Signal übertragen wird.

Weitere interessante Beiträge

Zur Redakteursansicht