Quantenelektrodynamik auf dem Prüfstand

Forscher bestätigen Quantenelektrodynamik in starken Feldern mit bislang unerreichter Präzision

4. Juli 2011

In Goethes berühmtem Drama zweifelt der Gelehrte „Faust“ daran, dass die Wissenschaft ergründen kann, was die Welt im Innersten zusammenhält. Physiker setzen dieser Skepsis heute die Theorie der Quantenelektrodynamik entgegen. Sie beschreibt die Wirkung von elektrischen und magnetischen Kräften und bestimmt die Struktur von Atomen und Molekülen. Obwohl die Quantenelektrodynamik zu den am genauesten überprüften Theorien zählt, vermuten viele Physiker, dass sie bei sehr starken elektrischen Feldern versagen wird. Doch bei welchen Feldstärken tritt das ein? Eine Forschergruppe des Max-Planck-Instituts für Kernphysik in Heidelberg bestätigte gemeinsam mit Kollegen von der Universität Mainz und dem GSI Helmholtzzentrum für Schwerionenforschung die Theorie mit bislang unerreichter Genauigkeit. Ihre Methode eignet sich zudem, grundlegende Größen wie die Masse von Elektronen oder die Größe von Atomkernen zu messen

Die drei Fallen sind in eine Apparatur integriert. Im linken Teil befindet sich die Erzeugungsfalle, in der Mitte die Analysefalle und rechts die Präzisionsfalle. Die gesamte Apparatur ist 18 Zentimeter lang. Die Grafik veranschaulicht das Silizium-Ion, das nur noch von einem Elektron umkreist wird, in der Präzisionsfalle.

Um die Quantenelektrodynamik in einem möglichst starken elektrischen Feld zu testen, haben die Forscher um Klaus Blaum vom Max-Planck-Instituts für Kernphysik einen besonderen Ort ausgewählt: das Innere eines Atoms. Wenn man in einem Atom alle bis auf ein letztes Elektron entfernt, entsteht ein sogenanntes wasserstoffähnliches Ion. Für Ihr Experiment wählten die Physiker Silizium. In einem solchen Ion herrscht am Ort des verbleibenden Elektrons eine Feldstärke von etwa 3 · 1013 Volt pro Zentimeter. Das zählt zu den höchsten im Labor erreichbaren Werten.

Die Struktur dieses Ions hat die Theoretikergruppe um Christoph Keitel im Rahmen der Quantenelektrodynamik extrem genau berechnet. Damit stellt es die ideale Umgebung für einen Test der Theorie unter extremen Bedingungen dar.

Blaum und seine Mitarbeiter wählten Silizium, weil es die schwerste, in ihrer Apparatur noch handhabbare Atomsorte ist. Ein Silizium-Atom besitzt im Normalfall 14 Elektronen. Daher mussten die Physiker zunächst alle weiter außen kreisenden Elektronen entfernen, indem sie die Silizium-Atome mit anderen, schnellen Elektronen beschossen. Bei Kollisionen katapultierten diese ihre Partner aus dem Atom heraus.

Auf diese Weise erhielten die Forscher ein Sammelsurium aus Ionen in unterschiedlichen Ladungszuständen, die sich dank ihrer positiven Ladung in einer elektromagnetischen Falle einfangen lassen. Hierin überlagern sich ein starkes Magnetfeld und ein elektrisches Feld. „Letzteres kann man sich wie einen Topf vorstellen, in dem die Ionen wie Murmeln hineinfallen“, veranschaulicht der Erstautor der Arbeit Sven Sturm diese Technik.

Die Apparatur besteht aus drei Fallen. Von der Erzeugungsfalle gelangte die Wolke in die Präzisionsfalle. Dort wurden die Ionen einer gezielten Radiofrequenzanregung unterzogen mit der Folge, dass alle Ionen außer der gewünschten Spezies aus der Falle geworfen wurden. Übrig blieb ein Ensemble aus Silizium-Ionen mit nur noch einem Elektron. Dann wurde das elektrische Feld so verändert, dass sich die Wände des „Topfes“ immer weiter absenkten. Aus diesem immer flacher werdenden Topf fielen die energiereichsten Silizium-Ionen nach und nach heraus, bis nur noch ein einziges Ion übrig blieb. Dieses kann über Monate hinweg gespeichert werden und bildet so das Testteilchen für die Quantenelektrodynamik.

Das den Kern umkreisende Elektron kann man sich wie eine Kugel vorstellen, die den Kern umkreist und gleichzeitig um die eigene Achse rotiert. Dabei erzeugt es ein Magnetfeld. In einem sehr starken Magnetfeld ist die Spin-Achse entweder parallel oder antiparallel zu den Feldlinien ausgerichtet. Diese Ausrichtung stellten die Physiker in der dritten Abteilung, der Analysefalle, fest.

Zur Redakteursansicht