Sensibler Lichtschalter für Nervenzellen

Ein hochempfindliches Membranprotein erlaubt es, Zellen auch mit schwachen Lichtreizen präzise zu steuern

23. März 2011

Ob bei Würmern, Fliegen oder Mäusen – inzwischen können Wissenschaftler Nervenzellen mithilfe von Lichtblitzen kontrollieren und damit sogar das Verhalten steuern. Grundlage für das Forschungsgebiet der Optogenetik sind lichtempfindliche Membranproteine – Channelrhodopsine –, die sich in die Zellmembran einbauen lassen. Als Reaktion auf Licht lösen sie einen Nervenimpuls aus. Forscher am Max-Planck-Institut für Biophysik in Frankfurt haben nun ein neues, hochempfindliches Channelrhodopsin entwickelt. Im Vergleich zu anderen Typen des Proteins kann die Variante CatCh (calcium translocating channelrhodopsin) Nervenimpulse wegen ihrer leicht erhöhten Durchlässigkeit für Kalzium schon mit etwa 70-mal weniger Licht und einer erhöhten Präzision und Geschwindigkeit auslösen. Dies ermöglicht es, auch Zellen in tiefer gelegenen Regionen des Gehirns per Lichtblitz zu aktivieren, ohne dass dafür zusätzliche Lichtleiter nötig sind. Außerdem genügt Sonnenlicht anstelle von Laserlicht aus, um Nervenzellen zu aktivieren. Das neue Molekül  eignet sich daher hervorragend für einen möglichen klinischen Einsatz beim Menschen, um Krankheiten wie Epilepsie, Parkinson oder Blindheit zu behandeln.

Nervenzelle aus dem Hippokampus einer Maus. Die Zelle enthält das hoch empfindliche Channelrhodopsin CatCh und wird durch einen Fluoreszenz-Farbstoff zum Leuchten gebracht.

Nervenzellen, die sich über blaue Lichtblitze beliebig ein- und ausschalten lassen – was wie Science Fiction klingt, ist seit einigen Jahren Realität: Das neue Forschungsgebiet der Optogenetik beschäftigt sich damit, Zellen mithilfe von Licht zu kontrollieren. Dazu schleusen Wissenschaftler ein Gen ins Erbgut der Zelle, das die Bauanleitung für ein lichtempfindliches Kanalprotein der Zellmembran – ein so genanntes Channelrhodopsin – enthält. Fällt blaues Licht auf eine derart modifizierte Nervenzelle, strömen positiv geladene Ionen durch das Kanalprotein ins Zellinnere, so dass das Innere der Zelle positiv geladen wird und folglich ein elektrisches Signal ausgelöst wird.

Eine Forschergruppe um Ernst Bamberg vom Max-Planck-Institut für Biophysik in Frankfurt hat nun ein neues, hochempfindliches Channelrhodopsin entwickelt. Nervenzellen mit der Mutante CatCh (calcium translocating channelrhodopsin) können mit rund 70-mal weniger Licht angeregt werden, als wenn sie die natürliche Form des Proteins enthalten. Aufgrund seiner hohen Durchlässigkeit für positiv geladene Kalzium-Ionen hat CatCh außerdem eine viel kürzere Reaktionszeit und kann daher auf Lichtreize schneller reagieren.

„Die Variante CatCh eröffnet uns mit ihrer hohen Lichtempfindlichkeit ganz neue Möglichkeiten“, sagt Sonja Kleinlogel, Erstautorin der Veröffentlichung. „Wir können damit auch Zellen in tiefer gelegenen Regionen des Gehirns steuern, ohne dass wir den Lichtblitz über Glasfasern dorthin leiten müssen. Außerdem können wir Gewebeschäden durch starke, aggressive Lichtstrahlung vermeiden, indem wir längerwelliges oder weniger starkes Licht zur Aktivierung von CatCh heranziehen.“ Das neue Channelrhodopsin ermöglicht es zudem, auch solche Zellen zu kontrollieren, die mit einer hohen Impulsfrequenz feuern, wie beispielsweise die Haarzellen im Innenohr oder manche Interneurone der Hirnrinde. Die Kombination von hoher Lichtempfindlichkeit mit schneller Reaktionszeit ist einmalig und existiert in keiner anderen Form des Channelrhodopsin Proteins.

Ursprünglich stammen Channelrhodopsine aus der einzelligen Grünalge Chlamydomonas rheinhardtii. Als Bestandteil der Zellwand ermöglichen sie es der Alge, auf Helligkeit zu reagieren. Seit der Entdeckung von Channelrhodopsin-2 im Jahr 2003, ebenfalls in der Forschungsgruppe von Ernst Bamberg am MPI für Biophysik, sind die lichtempfindlichen Membranproteine zu einem wichtigen Werkzeug in der Zell- und Neurobiologie geworden und haben die Hirnforschung revolutioniert. Sie erlauben es erstmals, Nervenzellen ohne Elektroden und mit bisher unerreichter zeitlicher und räumlicher Präzision zu steuern. Daher sind die molekularen Schalter nicht nur vielversprechend, um die Funktionsweise des Nervensystems zu erforschen, sondern bergen auch ein großes Potenzial für medizinische Anwendungen.

So könnte sich mit optogenetischen Methoden möglicherweise Blindheit behandeln lassen, die durch das Absterben von Sehrezeptoren verursacht wird. Auch Patienten mit Erkrankungen des Nervensystems wie Epilepsie oder Parkinson profitieren möglicherweise davon. Die neue Channelrhodopsin-Variante CatCh könnte den Weg zu solchen biomedizinischen Anwendungen ebnen. „Bei einem so lichtempfindlichen Protein wie CatCh reicht normales Tageslicht aus, um die Nervenzellen anzuregen“, sagt Sonja Kleinlogel. „Die Optogenetik macht damit Riesensprünge in Richtung Klinik.“

EM/HR

Zur Redakteursansicht