Max-Planck-Institut für Struktur und Dynamik der Materie

Max-Planck-Institut für Struktur und Dynamik der Materie

Neue Methoden ermöglichen es Physikern und Biologen am Max-Planck-Institut für Struktur und Dynamik der Materie, Neuland in der Wissenschaft zu betreten. Mithilfe neuer Strahlungsquellen, vor allem mit dem Röntgen-Freie-Elektronen-Laser, der am DESY in Hamburg gebaut wird, können die Forscher die Eigenschaften und das Verhalten von Materie mit einer räumlichen Auflösung von wenigen Nanometern und in Zeitintervallen von wenigen milliardstel Bruchteilen einer Milliardstel Sekunde abbilden. Auf diese Weise gewinnen sie völlig neue Einsichten in die Struktur und Funktion biologischer Materialien sowie in die Eigenschaften von Festkörpern und deren elektronische und strukturelle Dynamik. So kontrollieren Physiker mit dem kohärenten Licht von Lasern die kollektiven Eigenschaften, wie etwa die Supraleitung, komplexer Festkörper, zu denen unter anderem viele Keramiken zählen.

Kontakt

Luruper Chaussee 149, Geb. 99 (CFEL)
22761 Hamburg
Telefon: +49 40 8998-88002
Fax: +49 40 8994-6570

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS for Ultrafast Imaging and Structural Dynamics

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Die Consolidator Grantees der MPG 2024 (v.l.n.r.): Marcel Böhme, MPI für Sicherheit und Privatsphäre, Mario Flock, MPI für Astronomie, Manuel Gomez Rodriguez, MPI für Softwaresysteme, Mariana Rossi, MPI für Struktur und Dynamik der Materie, Birgit Stiller, MPI für die Physik des Lichts, Henning Fenselau, MPI für Stoffwechselforschung, Duarte Figueiredo, MPI für molekulare Pflanzenphysiologie, Valerie Hilgers, MPI für Immunbiologie und Epigenetik, Andrea Martin, MPI für Psycholinguistik.

Im europäischen Vergleich liegt die Max-Planck-Gesellschaft auf Platz zwei

mehr
Die Max-Planck-Synergy-Grantees 2024 (von links oben bis rechts unten): Benedetta Ciardi, MPI für Astrophysik, Torsten Enßlin, MPI für Astrophysik, Alessandra Buonanno, MPI für Gravitationsphysik, Xinliang Feng, MPI für Mikrostrukturphysik, Axel Kleinschmidt, MPI für Gravitationsphysik, Joël Ouaknine, MPI für Softwaresysteme, Florian Luca, MPI für Softwaresysteme, Angel Rubio, MPI für Struktur und Dynamik der Marterie, Petra Schwille, MPI für Biochemie, Alexander Herbig, MPI für evolutionäre Anthropologie, Herwig Baier, MPI für biologische Intelligenz, Jennifer Li und Drew Robson, MPI für biologische Kybernetik, Aneta Koseska, MPI für Neurobiologie des Verhaltens – CAESAR, Alec Wodtke, MPI für multidisziplinäre Naturwissenschaften.

Max-Planck holt zwölf Synergy Grants und liegt damit im ERC-Ranking auf Platz eins

mehr

Das europäische Projekt Magnetic Multiscale Modelling Suite soll Magnete ohne seltene Erden identifizieren

mehr
Das Bild zeigt eine Kachel mit Bildern von 10 Max Planck Forschern und Forscherinnen, die im Vergabeverfahren 2022 um den ERC Consolidator Grant  erfolgreich waren. Es sind Annalisa Pillepich, MPI für Astronomie, Philip J.W.Moll, MPI für Struktur und Dynamik der Materie, Simone Kuehn, MPI für Bildungsforschung, Joshua Wilde, MPI für demografische Forschung Meritxell Huch, MPI für molekulare Zellbiologie und Genetik, Dora Tang, MPI für molekulare Zellbiologie und Genetik, Aljaz Godec, MPI für Multidisziplinäre Naturwissenschaften, Stéphane Hacquard, MPI für Pflanzenzüchtungsforschung, Hiroshi Ito, MPI für Hirnforschung und Daniel Schramek, MPI für molekulare Genetik

Mit diesem Ergebnis liegt Max-Planck im europäischen Vergleich auf Platz zwei

mehr

Im deutschlandweiten Vergleich liegt die MPG auf Platz zwei

mehr
Mehr anzeigen

Materialeigenschaften mit Licht wie mit einem Zauberstab schalten: Das ist das Ziel von Andrea Cavalleri. Der Direktor am Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg verändert mit Lasern das Verhalten von Kristallen und erzeugt so etwa für kurze Zeit Supraleiter, die Strom bei Zimmertemperatur verlustfrei leiten.

Momentan sind keine Angebote vorhanden.

Richtungsänderung: Forschungsteam entdeckt schaltbare elektronische Chiralität in einem Kagome-Supraleiter

2022 Moll, Philip; Putzke, Carsten

Festkörperforschung Materialwissenschaften

Ob Kristallstrukturen mit ihrem Spiegelbild übereinstimmen bestimmt normalerweise, wie sich Elektronen darin verhalten dürfen. Forscher am MPSD haben mit einem internationalen Team nachgewiesen, dass die Elektronen des Kagome-Supraleiters CsV3Sb5 überraschenderweise nicht spiegelsymmetrisch sind, obwohl es die Kristallstruktur eigentlich ist. Die Elektronen ordnen sich selbst nicht spiegelsymmetrisch an und die Ordnung kann mit Magnetfeldern verändert werden – ein bisher nicht bekanntes Phänomen. Diese schaltbare Händigkeit könnte in zukünftigen Technologien Anwendung finden.

mehr

Design von Materialien mit klassischem und Quantenlicht 

2021 Christian Eckhardt und Michael Sentef

Materialwissenschaften Quantenphysik

 In den letzten Jahren ist es gelungen, kurze und starke Laserpulse mit vielen Photonen zu erzeugen, die auf extrem schnellen Zeitskalen mit Materialien wechselwirken und das Verhalten dieser Materialien verändern. Im benachbarten Forschungsgebiet der Quantenoptik stehen dagegen die Quantenfluktuationen des Lichts im Mittelpunkt, bei denen nur wenige virtuelle Photonen im Vakuum entstehen und wieder verschwinden. Am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg schlagen wir nun eine Brücke zwischen diesen beiden Bereichen. Wir erforschen das Potenzial von klassischem und Quantenlicht, um Designermaterialien mit maßgeschneiderten Eigenschaften zu kreieren, die neue energiesparende und quantentechnische Anwendungen ermöglichen könnten.

mehr

Die Gestaltungsprinzipien der Natur auf atomaren und elektronischen Zeitskalen

2019 Eike C. Schulz, Robert Bücker, Günther H. Kassier, Hong Guan Duan,  R.J. Dwayne Miller

Chemie Festkörperforschung Materialwissenschaften Mikrobiologie Quantenphysik

Wie hat die Natur biologische Strukturen optimiert, um chemische Prozesse optimal in lebende Systeme umzuwandeln? Bei der Überschreitung chemischer Barrieren (etwa 100 Femtosekunden) wurde vorgeschlagen, dass die Natur Form und Funktion so optimiert, dass Quanteneffekte gezielt genutzt werden, um die Kohärenz auszudehnen - einschließlich der elektronischen Kohärenzen, die empfindlich auf Umgebungsschwankungen reagieren. In enzymatischen Prozessen, die Mikrosekunden andauern, steuern stochastische, thermisch angetriebene Bewegungen die Chemie, um biologische Funktionen anzutreiben.

mehr

Lichtinduzierte Supraleitung: Fußbälle leiten Strom ohne Widerstand

2017 Först, Michael; Nicoletti, Daniele; Cavalleri, Andrea

Festkörperforschung Materialwissenschaften

Supraleiter zeigen die bemerkenswerte Eigenschaft, elektrischen Strom bei sehr tiefen Temperaturen widerstandslos leiten zu können. Der Einsatz dieser Materialien im alltäglichen Leben ist allerdings dadurch begrenzt, dass dafür Temperaturen von mindestens −70°C notwendig sind. In Kohlenstoff-basierten Molekülen gelang es nun, durch Bestrahlung mit intensiven mittelinfraroten Laserblitzen den supraleitenden Zustand kurzfristig bei höheren Temperaturen zu erreichen. Die Erkenntnisse helfen bei der Entwicklung neuer Materialien, die bei deutlich höheren Temperaturen supraleitend werden.

mehr

Wie Licht Materie verändert: über den Einfluss von Laserlicht und einzelnen Photonen

2016 Ruggenthaler, Michael; Hübener, Hannes; Sentef, Michael A.; Appel, Heiko; Rubio, Angel

Chemie Festkörperforschung Materialwissenschaften Quantenphysik

Die Eigenschaften eines Materials, z.B. seine Leitfähigkeit, können durch Wechselwirkung mit Licht gezielt verändert werden. Dies kann mittels vieler Photonen in Form eines Laserstrahls geschehen, in manchen Fällen genügen aber bereits wenige Photonen. Forscher der Theorie-Abteilung am Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg verwenden beide Extreme, um neuartige Zustände der Materie zu untersuchen: Mit Lasern können bisher unbeobachtete Materiezustände theoretisch erzeugt werden, und chemische Reaktionen lassen sich durch den Einfluss weniger Photonen verändern.

mehr
Zur Redakteursansicht