Kleine Schneeflocken im Meer haben eine große Wirkung

Forschende am Max-Planck-Institut für marine Mikrobiologie entwickeln biogeochemische Modelle weiter, die den marinen Stickstoffkreislauf erklären

In den produktiven Zonen des Meeres gibt es einen ständigen Niederschlag an organischem Material, den sogenannten ‚Marine Snow‘. Dieser marine Schnee verhält sich wie richtiger Schnee: Große Flocken sind seltener und fallen schnell, kleine Flöckchen kommen sehr oft vor und rieseln langsam. Forschende aus Bremen und Kiel haben jetzt herausgefunden, dass es diese beiden Eigenschaften sind, die kleinen Partikeln eine große Bedeutung für die Regulierung des Nährstoffhaushaltes der Meere verleihen. Die Erkenntnisse sind wesentlich für die Weiterentwicklung biogeochemischer Modelle, die den marinen Stickstoffkreislauf darstellen.

Ein Team aus Wissenschaftlerinnen und Wissenschaftlern des Max-Planck-Instituts für marine Mikrobiologie, des Max-Planck-Instituts für Meteorologie und des GEOMAR – Helmholtz-Zentrum für Ozeanforschung Kiel hat die Sauerstoff-Minimumzone im östlichen Südpazifik vor Peru, eine der größten Sauerstoff-Minimumzonen der Welt, genauer unter die Lupe genommen. Sie untersuchten verschieden große Partikelteilchen, die sich aus Algenresten und anderen organischen Materialien zusammensetzen, um zu verstehen, wie die Partikel den Stickstoffkreislauf in der Sauerstoff-Minimumzone beeinflussen. Dabei haben sie ein lang bestehendes Rätsel gelöst: wie die in den Partikeln gebundenen Nährstoffe zu den frei in der Wassersäule schwebenden Anammox-Bakterien gelangen.

Zuviel des Guten ist schlecht

Zunächst einmal: Sauerstoff-Minimumzonen sind Bereiche im Meer, in denen kein oder nur ganz wenig Sauerstoff vorhanden ist. Da die meisten Tiere Sauerstoff zum Atmen benötigen und deshalb in diesen Bereichen nicht leben können, werden sie auch Todeszonen im Meer genannt. Sie sind an sich ein natürliches Phänomen, können aber durch menschlichen Einfluss verstärkt werden. In vielen Teilen der Meere und Ozeane konnte dies nachgewiesen werden. Eine Ursache dafür ist die Erwärmung der Ozeane, da warmes Wasser weniger Sauerstoff speichern kann. Zusätzlich vermischt sich wärmeres Oberflächenwasser weniger mit darunter liegendem kühlerem Wasser, so dass weniger Sauerstoff durch Strömungen nachgeliefert wird.

Eine weitere Ursache hängt mit dem Stickstoffkreislauf zusammen. Stickstoff ist ein lebenswichtiger Nährstoff, ohne den Tiere und Pflanzen nicht wachsen können. Im Meer ist Stickstoff in einer Form, die Organismen aufnehmen und verarbeiten können, eigentlich Mangelware. Durch den Menschen werden die Meere aber mit den Stickstoffverbindungen Ammonium und Nitrat gedüngt. Unter anderem über die Flüsse und Atmosphäre gelangen diese Nährstoffe ins Meer. Die Mangelware gibt es plötzlich im Überschuss. Ammonium und Nitrat sorgen für ein starkes Wachstum von pflanzlichem Plankton. Sterben die Planktonorganismen ab, werden sie von Bakterien zersetzt, die viel Sauerstoff verbrauchen, der darum nach und nach knapp wird. Sobald kein Sauerstoff mehr vorhanden ist, finden mikrobielle Prozesse statt, die Nitrat, Nitrit und Ammonium zu Luftstickstoff umwandeln, der dann als Gas den Ozean verlässt.

Den Verlust von Stickstoff im Fokus

Zusammen sind die anaeroben Stickstoffverlust-Prozesse Anammox und Denitrifizierung innerhalb und am Rande der Sauerstoff-Minimumzonen für bis zu 40 Prozent des globalen Stickstoffverlustes im Meer verantwortlich. Durch welche Faktoren die zwei Prozesse reguliert werden, ist noch relativ unerforscht. Im Mittelpunkt dieser Studie steht der Anammox-Prozess, also die anaerobe Ammoniumoxidation mit Nitrit. Während dieses Prozesses wird dem Ozean in Nährstoffen gebundener Stickstoff entzogen. Die Forschenden gingen in ihrem Projekt der Beobachtung nach, dass der Anammoxprozess vor allem dort besonders hoch ist, wo viel organisches Material in Form von Partikeln – dem Meeresschnee – vorhanden ist. Die These lautete, dass das organische Material, das viel gebundenen Stickstoff enthält, als Quelle für Ammonium für die Anammox-Reaktion dient. Gegen diese These sprach allerdings, dass auf den kleinen organischen Partikeln, die nach Algenblüten in Richtung Tiefsee sinken, keine Anammox-Bakterien zu entdecken waren. Wie also finden die Bakterien in der Wassersäule ihre Nährstoffquelle?

Mit Unterwasserkameras kamen die Forschenden des Rätsels Lösung auf die Spur. Sie nahmen in der Sauerstoff-Minimumzone vor Peru an verschiedenen Stationen Tiefenprofile auf, um zu sehen, wie viele Partikel es jeweils gab. „Wir haben beobachtet, dass der Anammoxprozess vor allem da stattfindet, wo viele kleine Partikel vorhanden sind“, sagt Clarissa Karthäuser, die zusammen mit Soeren Ahmerkamp Erstautorin des Papers ist. „Für den Anammox-Prozess sind also kleine Partikel wichtiger als große – wobei klein heißt, dass sie etwa die Größe einer Haaresbreite haben und noch gerade so sichtbar sind.“

Diese kleinen Partikel kommen in der Wassersäule sehr oft vor, sinken nur langsam und haben dadurch lange Aufenthaltszeiten. Gleichzeitig ist das organische Material bei ihnen enger verklebt. Dadurch transportieren sie ähnlich viel Material pro Partikel wie die größeren Resteklumpen, summiert also auch deutlich mehr gebundenen Stickstoff. „Wir haben festgestellt, dass die Ammonium-Konzentration in der Grenzschicht, das heißt, um das Partikel herum, deutlich erhöht ist“, sagt Soeren Ahmerkamp. „So ist es erstens durch die hohe Anzahl und langen Aufenthaltszeiten von kleinen Partikeln in der Wassersäule sehr wahrscheinlich, dass Bakterien zufällig auf sie treffen. Zweitens werden durch die hohe Ammoniumkonzentration in der Grenzschicht schnell viele Bakterien versorgt.“

Wichtige Daten für Erdsystemmodelle

Auf diese neuen Erkenntnisse kann nun sehr gut aufgebaut werden. „Mit der Studie haben wir einen wichtigen Aspekt des Anammox-Prozesses geklärt und damit wesentlich zu einem besseren Verständnis des Nährstoffhaushaltes der Meere beigetragen“, sagt Marcel Kuypers, Leiter der Abteilung Biogeochemie am Max-Planck-Institut in Bremen und verantwortlich für die Studie. „Mit diesen Daten können wir nun biogeochemische Erdsystemmodelle erweitern, um die Auswirkungen des vom Menschen beeinflussten Sauerstoffmangels und des erhöhten Planktonwachstums auf den Stickstoffkreislauf besser einzuschät­zen.“

Weitere interessante Beiträge

Zur Redakteursansicht