Max-Planck-Institut für Dynamik komplexer technischer Systeme

Max-Planck-Institut für Dynamik komplexer technischer Systeme

Eine Produktionsanlage in der chemischen oder biotechnologischen Industrie ist so komplex wie ein Lebewesen: Unzählige Komponenten arbeiten darin an einem Produkt. Zahlreiche Prozesse beeinflussen sich dabei gegenseitig oder konkurrieren gar miteinander. Und oft genug ist nicht klar, warum ein Prozess funktioniert oder gerade nicht. Daher erforschen die Wissenschaftler des Max-Planck-Instituts für Dynamik komplexer technischer Systeme sowohl biologische als auch technische Vorgänge. Ingenieure, Chemiker, Physiker, Biologen und Mathematiker entwickeln dafür mathematische Modelle. Im Fall der technischen Prozesse testen sie diese Modelle in eigenen Versuchsanlagen. Anschließend entwerfen sie eine geeignete Steuerung und Regelung, damit die Prozesse in den Anlagen nicht unversehens zum Erliegen kommen oder gar außer Kontrolle geraten. Auf der Basis ihrer Erkenntnisse entwickeln die Forscher aber auch völlig neue Prozesskonzepte mit weitaus höherer Effizienz.

Kontakt

Sandtorstr. 1
39106 Magdeburg
Telefon: +49 391 6110-0
Fax: +49 391 6110-500

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS for Advanced Methods in Process and Systems Engineering

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Abteilung Systemtheoretische Grundlagen der Prozess- und Bioprozesstechnik

mehr

Abteilung System- und signalorientierte Bioprozesstechnik

mehr

Abteilung Physikalisch-Chemische Grundlagen der Prozesstechnik

mehr
Virusähnliche Partikel als möglicher Covid-19-Impfstoff

ContiVir, ein Max-Planck-Spin-off, stellt den Kandidaten eines Impfstoffs gegen das Coronavirus vor, der sich schnell in großen Mengen herstellen ließe

mehr
Energie für die künstliche Zelle

Forschende bringen Protonenpumpe der Atmungskette in künstlicher Polymer-Membran zum Laufen

mehr
Impulse für eine Corona-Impfung

Für eine weitreichende Immunisierung der Weltbevölkerung ist nicht nur ein wirkungsvoller Impfstoff nötig, sondern auch seine effiziente Produktion

mehr
Zika und Gelbfieber: Impfstoffe ohne Ei

Die Versorgung mit einigen lebenswichtigen Impfstoffen könnte in Zukunft sicherer werden. Ein Team um Forscher des Max-Planck-Instituts für Dynamik komplexer technischer Systeme in Magdeburg entwickelt Methoden, mit denen sich Viren für Impfstoffe in deutlich höherer Konzentration vermehren lassen als bislang.

mehr
Auf dem Weg zur künstlichen Zelle

Mit der Integration eines rudimentären Stoffwechsels in ein winziges Tröpfchen ist ein Schritt gelungen, um zu den Grenzen des Lebens vorzudringen

mehr

Wenn eine weltumspannende Pandemie durch Grippeviren droht, könnte die Impfstoffproduktion an ihre Grenzen kommen. Denn der Grippe-Impfstoff wird heute größtenteils noch in bebrüteten Hühnereiern erzeugt. Udo Reichl, Direktor am Max-Planck-Institut für Dynamik komplexer technischer Systeme, und seine Mitarbeiter erforschen daher eine vollautomatische Produktion in Zellkulturen, die im Krisenfall Impfstoff in großer Menge liefern soll.

Normalerweise arbeiten Peter Benner und seine Kollegen vom Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg an komplizierten numerischen Methoden, um die Regelung und Steuerung technischer Systeme und Anlagen zu optimieren. Doch jüngst kam ihre Forschung in einem politischen Konflikt zum Einsatz. Es ging um Drogenanbau, Pestizide und Grenzverletzungen in Südamerika.

Holzabfälle und Stroh bergen wertvolle Substanzen für die chemische Industrie, die Chemiker des Max-Planck-Instituts für Kohlenforschung in Mülheim an der Ruhr und des Max-Planck-Instituts für Dynamik komplexer technischer Systeme in Magdeburg gewinnen wollen. Die Forscher suchen nach Mitteln, Biomasse in nützliche chemische Verbindungen zu verwandeln und diese als Energieträger oder Rohstoffe zu nutzen.

Selbst Menschen mit einer Querschnittlähmung können heute Rad fahren – dank der funktionellen Elektrostimulation, die Nervensignale des Gehirns ersetzt. Thomas Schauer entwickelt für die Technik am Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg eine ausgefeilte Regelung, die auch Schlaganfallpatienten hilft, schnell wieder auf die Beine zu kommen.

Trotz einer Querschnittslähmung Rad fahren oder nach einem Schlaganfall wieder gehen lernen – das ermöglicht die funktionelle Elektrostimulation, die Beine oder Arme von Patienten dank einer ausgeklügelten Regelung in Bewegung bringt.

Momentan sind keine Angebote vorhanden.

Zuverlässige Diagnose für Brennstoffzellen

2019 Vidaković-Koch, Tanja; Sorrentino, Antonio

Chemie Komplexe Systeme Materialwissenschaften

Im Zeitalter der Elektromobilität spielen elektrochemische Energiewandler wie Brennstoffzellen eine wesentliche Rolle im Alltag. Daher werden Diagnosewerkzeuge, welche die verschiedenen Fehlerzustände (Flutung, Austrocknung, Katalysatorabbau, Vergiftung etc.) dieser Geräte exakt feststellen können, zunehmend erforderlich. Wir berichten über ein neues experimentelles Verfahren zur Brennstoffzellendiagnostik, das auf der Frequenzganganalyse von Konzentrationseingang und elektrischem Ausgang (Strom- oder Zellpotenzial) basiert und selektiv zwischen verschiedenen Fehlerzuständen unterscheidet.

mehr

Optimierung und Regelung chemischer Trennverfahren

2018 Kienle, Achim

Chemie Komplexe Systeme Strukturbiologie Zellbiologie

Die Trennung von komplexen Stoffgemischen ist eine wichtige Aufgabe in der chemischen, pharmazeutischen und biotechnologischen Industrie. Präparative Chromatographie ist hier ein häufig angewendetes Verfahren. Aktuelle Forschungsarbeiten an unserem Institut leisten einen Beitrag zum besseren Verständnis dieser Prozesse, zum zielgerichteten Prozessentwurf und zur automatischen Prozessführung. Zwei ausgesuchte Schwerpunkte betreffen die modellgestützte Analyse von Prozessen mit impliziten Adsorptionsisothermen sowie ein neues selbstlernendes Regelkonzept.

mehr

Computer berechnen Umgestaltung von Mikroorganismen zu Zellfabriken

2017 Steffen Klamt, Björn-Johannes Harder, Axel von Kamp

Chemie Komplexe Systeme Mikrobiologie Strukturbiologie Zellbiologie

Mit Modellen und neuen Computer­algorithmen untersuchten Forscher am Magdeburger Max-Planck-Institut fünf der wichtigsten biotechnologischen Produktionsorganismen (wie Escherichia coli und Bäckerhefe) daraufhin, ob sich das Wachstum der Zellen mit der Produktion von (Bio)- Chemikalien koppeln lässt. Die Berechnungen zeigen, dass für fast jedes Stoffwechselprodukt geeignete genetische Interventionen existieren, mit denen eine Kopplung der Synthese des Produkts mit dem Zellwachstum möglich ist. Die Studie trägt grundlegend zur Entwicklung von neuen biotechnologischen Prozessen bei.

mehr

Entwicklung eines neuen Rohr-Bioreaktors für die kontinuierliche Produktion von Influenza-Impfstoffen

2016 Tapia, Felipe; Genzel, Yvonne; Reichl, Udo

Infektionsbiologie Komplexe Systeme Medizin

Mit steigender Weltbevölkerung und rascher Ausbreitung alter und neuer Influenza-Viren sind effizientere Verfahren zur Impfstoffproduktion gefragt. Eine Option sind gekoppelte kontinuierliche Bioreaktoren. Leider führt die Anhäufung von defekten interferierenden Partikeln zu instabilen Virusausbeuten. Als Alternative haben wir einen neuen Rohrreaktor mit Pfropfenströmung entwickelt, in dem sich mit Suspensionszellen über drei Wochen hohe Ausbeuten an Influenza-Viren erzielen ließen. Dieses System kann auch für andere Viren genutzt werden und Impfstoffproduktionskosten weltweit verringern.

mehr

Iterative Löser für Phasenfeldmodelle

2015 Stoll, Martin

Informatik Komplexe Systeme Materialwissenschaften Mathematik

Phasenfeldmodelle sind ein wichtiges Instrument, um komplexe Vorgänge zu beschreiben. Die Simulation kann helfen, kostspielige Experimente zu ersetzen oder zu ergänzen. Dabei benötigt die Auswertung dieser Modelle effiziente Algorithmen. Die Forscher um Martin Stoll beschreiben iterative Löser, die mit den diskretisierten Differentialgleichungsmodellen umgehen können und eine akkurate Lösung der Probleme erlauben.

mehr
Zur Redakteursansicht