Max-Planck-Institut für Plasmaphysik

Max-Planck-Institut für Plasmaphysik

Die Forscher des Max-Planck-Instituts für Plasmaphysik wollen das Feuer der Sonne auf die Erde holen. Ein Fusionskraftwerk soll Energie erzeugen, indem Deuterium- und Tritium-Kerne, zwei schwere Isotope des Wasserstoffs, zu Helium verschmelzen. Das Fusionsfeuer zündet in einem über 100 Millionen Grad Celsius heißen Plasma, das berührungsfrei in einem Magnetfeld eingeschlossen wird. Der internationale Testreaktor ITER soll zeigen, dass die Reaktion mehr Energie liefert, als aufzuwenden ist, um die hohe Zündtemperatur aufrechtzuerhalten. Dazu erforschen die Wissenschaftler unterschiedliche Anlagentypen und die Prozesse, die darin ablaufen. In Garching wird ASDEX Upgrade betrieben, im Teilinstitut Greifswald Wendelstein 7-X, die weltweit größte Fusionsanlage vom Bautyp Stellarator. In Experiment und Theorie wird hier untersucht, wie sich die Fusionsbedingungen am effizientesten schaffen lassen. Nicht zuletzt werden im IPP auch die sozio-ökonomischen Bedingungen studiert, unter denen die Kernfusion zum künftigen Energiemix beitragen kann.

Kontakt

Boltzmannstr. 2
85748 Garching
Telefon: +49 89 3299-01
Fax: +49 89 3299-2200

Promotionsmöglichkeiten

Dieses Institut hat keine International Max Planck Research School (IMPRS).

Es gibt jedoch die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Abteilung Stellarator-Szenario-Entwicklung

mehr

Abteilung Stellerator: Rand- und Divertorphysik

mehr

Abteilung Numerische Methoden in der Plasmaphysik

mehr

Abteilung Tokamak: Rand- und Divertorphysik

mehr

Abteilung Stellarator-Optimierung

mehr

Abteilung Tokamak-Szenario-Entwicklung

mehr

Mit der Integration des IPP in die Max-Planck-Gesellschaft schlägt das Institut ein neues Kapitel in seiner Geschichte auf, die bis zu Werner Heisenberg zurückreicht

mehr

Am 21. März 1991 erzeugte die Experimentieranlage Asdex Upgrade am Max-Planck-Institut für Plasmaphysik in Garching das erste Plasma

mehr

Es wäre eine völlig neue Energiequelle: Die Kernfusion soll die Kraft der Sonne auf die Erde holen. Einen Weg zu dieser Form der Energieerzeugung verfolgen Forscher um Thomas Klinger, Direktor am Max-Planck-Institut für Plasmaphysik in Greifswald, mit der Anlage Wendelstein 7-X

mehr

Das 360-Grad-Panorama der Greifswalder Fusionsanlage erlaubt eine Reise in das Plasmagefäß

mehr

Das „Max-Planck-Princeton Center for Plasma Physics“, das 2012 von der Max-Planck-Gesellschaft und der US-amerikanischen Princeton-Universität gegründet wurde, wird mit jährlich 250.000 Euro für weitere zwei bis maximal fünf Jahre gefördert.

mehr

Es wäre eine völlig neue Energiequelle: Die Kernfusion soll die Kraft der Sonne auf die Erde holen. Einen Weg zu dieser Form der Energieerzeugung verfolgen Forscher um Thomas Klinger, Direktor am Max-Planck-Institut für Plasmaphysik in Greifswald, mit der Anlage Wendelstein 7-X.

Die wissenschaftliche Basis für einen Fusionsreaktor zu festigen – mit diesem Ziel ist Sibylle Günter als  Wissenschaftliche Direktorin am Max-Planck-Institut für Plasmaphysik angetreten. Doch seit der Abkehr von der Kernspaltung hat es in der Politik auch die Kernfusion schwer.

Das Sonnenfeuer auf die Erde holen – aus dieser Vision soll Wirklichkeit werden. Doch zuvor müssen die Forscher noch viele Schwierigkeiten meistern, bis uns eines Tages der erste Fusionsreaktor mit dieser sauberen Energie versorgt.

drei Systemadministrator*innen

Max-Planck-Institut für Plasmaphysik, Garching 9. September 2021

Auszubildende 2022 - Elektroniker*in für Betriebstechnik

Max-Planck-Institut für Plasmaphysik, Garching 7. September 2021

Auszubildende 2022 - Fachinformatiker*in für Systemintegration

Max-Planck-Institut für Plasmaphysik, Garching 7. September 2021

Auszubildende 2022 - Kauffrau/Kaufmann für Büromanagement (m/w/d)

Max-Planck-Institut für Plasmaphysik, Garching 3. September 2021

Buchhalter*in

Max-Planck-Institut für Plasmaphysik, Garching 25. August 2021

Virtuelle Experimente zu Randinstabilitäten in Fusionsplasmen

2020 Cathey, Andres; Hölzl, Matthias; Günter, Sibylle

Plasmaphysik

Auf dem Weg zu einem Fusionskraftwerk, das die Verschmelzung von Atomkernen zur Energiegewinnung nutzt, sind noch einige Probleme zu lösen, darunter das Verständnis und die Kontrolle großräumiger Plasmainstabilitäten. Dazu gehören Edge-Localized Modes, periodische Instabilitäten am Plasmarand, die in weniger als einer Millisekunde zehn Prozent der Plasmaenergie ausschleudern können. In numerischen Simulationen ist es jetzt erstmals gelungen, ihre volle nichtlineare Dynamik über mehrere Zyklen hinweg zu berechnen und dabei die meisten experimentellen Beobachtungen zu reproduzieren.

mehr

Maßgeschneiderte Leistungsabfuhr für zukünftige Fusionskraftwerke

2019 Stroth, Ulrich; Wischmeier, Marco

Plasmaphysik

Extreme Leistungen aus dem heißen Plasma eines künftigen Fusionskraftwerks auf schonende Weise auf die umgebenden materiellen Oberflächen abzuführen, ist eine zentrale Herausforderung für die Wissenschaft. In Experimenten an den Fusionsanlagen ASDEX Upgrade in Garching sowie an JET in Culham/Großbritannien wurden dazu geeignete Plasma­szenarien entwickelt. Hierbei spielt die gezielte Verunreinigung des Wasserstoff­plasmas durch Zugabe von Fremdatomen eine wichtige Rolle.

mehr

Optimierte Radiowellen-Heizung für Fusionsplasmen

2018 Noterdaeme, Jean-Marie; Bobkov, Volodymyr

Plasmaphysik

Eine bewährte Methode, Plasmen in Fusionsanlagen auf viele Millionen Grad aufzuheizen, ist die Einstrahlung von Radiowellen mit der Ionen-Zyklotronfrequenz. Für Plasmagefäße mit metallenen Wänden, wie sie für ein künftiges Kraftwerk vorgesehen sind, hatte diese Heizmethode jedoch bislang einige Nachteile. Jetzt ist es gelungen, die Antenne, welche die Wellen in das Plasma einstrahlt, so zu optimieren, dass die Radiowellenheizung mit metallischen Wänden verträglich wird.

mehr

Auf dem Weg zu einem virtuellen Fusionsplasma

2017 Jenko, Frank

Plasmaphysik Quantenphysik Teilchenphysik

Neben großen Experimentieranlagen spielen in der Fusionsforschung in den letzten Jahren zunehmend Computersimulationen auf Höchstleistungsrechnern eine wichtige Rolle. Durch die Kombination von maßgeschneiderten physikalischen Modellen und modernsten numerischen Methoden gelingt es, die komplexen Grundgleichungen der Plasmaphysik auf einigen der leistungsstärksten Computern der Welt zu lösen. So können heutzutage bereits viele wichtige Einzelaspekte der Plasmadynamik quantitativ beschrieben werden.

mehr

Experimente mit dem Manipulatorsystem DIM-II im Divertor von ASDEX Upgrade

2016 Herrmann, Albrecht; Krieger, Karl

Plasmaphysik Quantenphysik Teilchenphysik

Der Divertor – speziell ausgerüstete und gekühlte Prallplatten am Boden des Plasmagefäßes, auf die Teilchen aus dem Rand des Plasmas abgelenkt werden – führt in einem späteren Fusionskraftwerk einen Teil der erzeugten Fusions­energie sowie die Helium-Asche ab. Mit dem Divertormanipulator DIM-II wird dies an der Fusionsanlage ASDEX Upgrade vorbereitet. Mit DIM-II können Teile des Divertors untersucht und ausgetauscht werden, ohne das Plasmagefäß zu öffnen. Damit lassen sich Plasma-Material-Wechselwirkungen an den Prallplatten untersuchen und Konzepte für aktiv gekühlte Prallplatten testen.

mehr
Zur Redakteursansicht