Max-Planck-Institut für Pflanzenzüchtungsforschung

Max-Planck-Institut für Pflanzenzüchtungsforschung

Das Max-Planck-Institut für Pflanzenzüchtungsforschung betreibt molekularbiologische Grundlagenforschung an Pflanzen. Das Ziel der Kölner Wissenschaftler ist es, konventionelle Züchtungsmethoden zu verbessern und umweltverträgliche Pflanzenschutzstrategien für Nutzpflanzen zu entwickeln. Dabei konzentrieren sie sich vor allem auf die Evolution von Pflanzen, ihren genetischen Bauplan, ihre Entwicklung sowie ihre Wechselwirkungen mit der Umwelt. Wie reagiert das pflanzliche Immunsystem beispielsweise auf Pflanzenschädlinge? Wie hängt der Zeitpunkt der Blüte von sich jahreszeitlich verändernden Tageslängen ab? Wie beeinflusst die genetische Variabilität von Nutzpflanzen die Anpassung an bestimmte Umwelteinflüsse? Im Labor und im Gewächshaus fahnden die Botaniker, Genetiker und Pflanzenphysiologen nach den molekularen Grundlagen natürlicher Formenvielfalt und liefern so innovative Beiträge zur Pflanzenzüchtung.

Kontakt

Carl-von-Linné-Weg 10
50829 Köln
Telefon: +49 221 5062-0
Fax: +49 221 5062-674

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS on Understanding Complex Plant Traits using Computational and Evolutionary Approaches

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Abteilung Entwicklungsbiologie der Pflanzen

mehr

Abteilung Pflanze-Mikroben Interaktionen

mehr

Abteilung Vergleichende Entwicklungsgenetik

mehr

HEI10- und ZYP1-Protein steuern Crossover

mehr

Die Erkenntnisse sind ein wertvolles Instrument im Kampf um die Ernährungssicherheit

mehr

Verschiedene EDS1 enthaltende Komplexe in Pflanzenzellen werden durch von TIR produzierte Botenstoffe aktiviert und lösen Immunreaktionen aus

mehr
Das Polymer Lignin (rot gefärbt) lagert sich nach einem definierten Muster in den Zellwänden der explodierenden Samenkapseln ab. Die Forscher identifizierten drei Laccase-Enzyme, die zur Bildung dieses Lignins erforderlich sind. Es bildet sich kein Lignin in der Zellwand (blau gefärbt), wenn alle drei Gene durch CRISPR/Cas9-Gen-Editierung ausgeschaltet werden.

Spezielle Gene steuern die mechanische Struktur der explodierenden Samenkapseln 

mehr
Mikroskopbild der Wurzelspitze der Ackerschmalwand

Das Pflanzenhormon Cytokinin hemmt das Wachstum von Wurzelzellen

mehr
Mehr anzeigen

Lanzettlich, eiförmig, elliptisch, ganzrandig, gesägt, einfach oder mehrfach gefiedert – die Vielfalt der Blätter hat viele Namen. Doch wie kommt diese Mannigfaltigkeit zustande? Miltos Tsiantis vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und sein Team suchen nach Genen, die das Blattwachstum kontrollieren. Ein zentrales Steuerelement haben sie schon gefunden.

In vielen Regionen der Erde bedroht Wassermangel die Landwirtschaft. Neue Pflanzensorten wie die Gerste müssen daher besonders widerstandsfähig gegenüber Trockenheit sein.

Wenn Kulturpflanzen Opfer von Krankheitserregern werden, kann das verheerende Folgen für die Welternährung haben. Christiane Gebhardt und ihre Mitarbeiter am Max-Planck-Institut für Züchtungsforschung suchen daher im Erbgut der Kartoffeln nach Genen, mit deren Hilfe sich sowohl Resistenzen als auch bestimmte Qualitätsmerkmale leichter züchten lassen.

Momentan sind keine Angebote vorhanden.

Modellierung von Pflanzenentwicklung und Artenvielfalt 

2021 Hay, Angela; Tsiantis, Miltos 

Pflanzenforschung

Warum verstehen wir im Zeitalter von Big Data immer noch nicht, wie Zellen, molekular und physikalisch, sich zu Geweben entwickeln und Organismen bilden? Eine einfache Antwort liegt in der mehrstufigen Komplexität, denn: Morphologische Prozesse auf verschiedenen Ebenen der biologischen Organisation ergeben erst durch komplexe Rückkopplungsschleifen von Genaktivität, Wachstum und Mechanik die endgültige Form. Computer sind dazu in der Lage, um aus solchen Daten mechanistische Modelle zu entwickeln. Wir beschreiben zwei bahnbrechende Studien zur Pflanzenentwicklung und Artenvielfalt. 

mehr

Klonale Vermehrung durch Saatgut: Vom Modellsystem zur Kulturpflanze

2020 Underwood, Charles; Mercier, Raphaël

Pflanzenforschung

Hybridkulturen werden in der Landwirtschaft wegen ihres höheren Ertrags bevorzugt. Die Nachkommen einer Hybridpflanze sind jedoch aufgrund sexueller Fortpflanzung genetisch variabel. Deshalb müssen Pflanzenzüchter Jahr für Jahr neues hybrides Saatgut aufwändig erzeugen. Forschungen haben gezeigt, dass eine sexuelle Vermehrung vermieden werden kann, sodass klonale Samen entstehen, die den Hybridzustand aufrechterhalten. Hier fassen wir neue Ansätze zusammen, die bei Hybriden von Arabidopsis und Reis entwickelt wurden und eine Revolution in der Hybridzüchtung und Saatgutproduktion versprechen.

mehr

Pflanzen vertrauen auf ihr Mikrobiom, um sich vor Krankheitserregern zu schützen

2019 Thiergart, Thorsten; Getzke, Felix; Hacquard, Stéphane

Pflanzenforschung

Pathogene Pilze und Eipilze (Oomyzeten), beides eukaryotische Mikroorganismen, sind für bis zu 10% aller Ernteausfälle verantwortlich. Bislang wurden hauptsächlich Pestizide, Züchtungen resistenter Pflanzen oder Manipulationen des pflanzlichen Immunsystems eingesetzt, um diese Krankheiten einzudämmen. Neue Forschungsergebnisse zeigen, dass bakterielle Lebensgemeinschaften im Bereich der Wurzeln Pflanzen vor eukaryotischen Mikroorganismen schützen können. In Zukunft könnten gezielt zusammengestellte Bakteriengemeinschaften genutzt werden, um Pflanzen vor diesen Krankheitserregern zu schützen.

mehr

Das epigenetische Gedächtnis der Pflanzen

2018 Krause, Kristin; Coupland, George; Turck, Franziska

Genetik Pflanzenforschung

Die Regulation der Genexpression folgt komplexen und unterschiedlichen Steuerungsmechanismen. Einer davon ist das epigenetische Gedächtnis, das bestimmt, wie stark einzelne Gene ausgeprägt werden. In Pflanzen wurde nun nachgewiesen, dass zwei kurze DNA Sequenzen, bezeichnet als Teloboxen und RY-Motive, an diesem Prozess beteiligt sind. Die Sequenzen treten an Genen auf, die epigenetisch reguliert werden. Transkriptionsfaktoren, die diese Motive erkennen, binden auch an Bausteine der Polycomb-Gruppen, die die Verpackung von DNA verdichten und dazu beitragen, das „Gengedächtnis“ zu verfestigen.

mehr

Für die Erzeugung besserer Nutzpflanzen müssen Züchter die Fruchtbarkeit der Staubblätter, dem männlichen Blütenorgan, in dem der Pollen in den Staubbeuteln (Antheren) heranreift, kontrollieren können. Ideal wäre hierbei eine Handhabung über die Freisetzung des Pollens aus den Staubbeuteln. Dazu ist jedoch ein detailliertes Verständnis erforderlich, wie die Zellen der Antheren diese Freisetzung steuern. Bei Gerste wird das Öffnen der Antheren vermutlich durch das Phytohormon Auxin reguliert. Dazu erfordert dieser Prozess Enzyme, die spezielle Zellen voneinander trennen können.

mehr
Zur Redakteursansicht