Max-Planck-Institut für Radioastronomie

Max-Planck-Institut für Radioastronomie

Das Max-Planck-Institut für Radioastronomie in Bonn hat Spuren in der irdischen Landschaft hinterlassen: eine riesige weiße Schüssel, die sich bei Effelsberg in der Eifel in den Himmel erhebt – das 100-Meter-Teleskop. Wenn die Wissenschaftler dort oder an anderen Antennen weltweit nach den Sternen greifen, muss das Wetter nicht unbedingt klar sein, Radiostrahlen durchdringen auch Wolken. In diesem für das menschliche Auge unsichtbaren spektralen Band betrachten die Forscher junge stellare Objekte ebenso wie altersschwache Sterne, Moleküle im interstellaren Medium ebenso wie ferne Radiogalaxien, das Zentrum der Milchstraße oder Magnetfelder sowie Staub und Gas in kosmologischen Entfernungen. Und weil für all dies ein Teleskop allein oft nicht ausreicht, arbeiten die Bonner Radioastronomen mit der sogenannten Interferometrie, indem sie mehrere über den Globus verteilte Antennen zu einem „Riesenauge“ zusammenschalten.

Kontakt

Auf dem Hügel 69
53121 Bonn
Telefon: +49 228 525-0
Fax: +49 228 525-229

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS for Astronomy and Astrophysics

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Abteilung Radioastronomische Fundamentalphysik

mehr

Abteilung Millimeter- und Submillimeter-Astronomie

mehr

Abteilung Radioastronomie/Very-Long-Baseline Radiointerferometrie

mehr

Nur der US-amerikanische Daten- und Telefondienst selbst kann über die Verfügbarkeit im Umkreis des 100-Meter-Teleskops Effelsberg entscheiden

mehr

Zwei leistungsfähige Teleskope führen zu den detailreichsten Radiokarten der nördlichen Ebene der Milchstraße

mehr

Die aktive Galaxie Centaurus A hat in der Radioastronomie Geschichte geschrieben

mehr

Mit dem Event Horizon Telescope gelingt eine Nahaufnahme der nächstgelegenen Radiogalaxie

mehr

Die 100-Meter-Antenne hat ein Stück Wissenschaftsgeschichte geschrieben und zählt noch heute zu den Spitzenteleskopen

mehr

Der Zentaur gehört zu den bekanntesten Konstellationen am Südhimmel. Wer das Sternbild mit dem Fernglas durchstöbert, entdeckt ein blasses Nebelfleckchen namens Centaurus A. Dahinter steckt eine ferne Milchstraße, in der ein supermassereiches schwarzes Loch sitzt. Michael Janssen vom Max-Planck-Institut für Radioastronomie in Bonn und der Radboud-Universität Nijmegen hat ein Team geleitet, das dieser Schwerkraftfalle mit dem Event Horizon Telescope jetzt so nahe gekommen ist wie niemals zuvor.

Es ist ein kosmisches Blitzlichtgewitter, das sich um uns herum abspielt. Ständig zuckt am irdischen Himmel irgendwo ein Puls auf, der im nächsten Augenblick wieder erlischt. Diese nur mit Radioteleskopen messbaren, tausendstel Sekunden andauernden Blitze stellen die Forscher vor eines der größten Rätsel der Astrophysik. Dass militante Aliens in den Weiten des Weltalls einen „Krieg der Sterne“ austragen, glauben die Wissenschaftler eher weniger. Woher aber stammen diese von den Experten schlicht Fast Radio Bursts genannten Erscheinungen?

Schwarze Löcher verschlucken alles Licht und sind daher unsichtbar. Was plausibel klingt, ist in der Praxis zum Glück für die Astronomen doch ein wenig anders. Denn diese Objekte sind von leuchtenden Gasscheiben umgeben und heben sich daher vom dunklen Hintergrund ab, ähnlich wie eine schwarze Katze auf einem weißen Sofa. Und so ist es mit dem Event Horizon Telescope jetzt erstmals gelungen, ein schwarzes Loch zu fotografieren. An der Beobachtung beteiligt waren auch Forschende des Max-Planck-Instituts für Radioastronomie in Bonn und des Instituts für Radioastronomie im Millimeterbereich (IRAM) im französischen Grenoble.

Das Projekt Einstein@Home ermöglicht es jedermann, am eigenen PC, Laptop oder Smartphone nach Gravitationswellen zu suchen und damit selbst zum Entdecker zu werden. Bruce Allen, Direktor am Max-Planck-Institut für Gravitationsphysik in Hannover, hat dieses Citizen-Science-Projekt begründet. Mittlerweile spürt die Software in den Big Data außerdem Pulsare auf. An dieser Fahndung sind auch Forscher des Max-Planck-Instituts für Radioastronomie in Bonn beteiligt.

Ausbildung zum*zur Industriemechaniker*in Fachrichtung Feingerätebau | Bad Münstereifel-Effelsberg

Max-Planck-Institut für Radioastronomie, Bad Münstereifel-Effelsberg 15. September 2021

Ausbildung zum*zur Elektroniker*in Fachrichtung Betriebstechnik

Max-Planck-Institut für Radioastronomie, Bad Münstereifel-Effelsberg 15. September 2021

Ausbildung zum*zur Industriemechaniker*in Fachrichtung Feingerätebau | Bonn

Max-Planck-Institut für Radioastronomie, Bonn 7. September 2021

Wissenschaftliche Mitarbeiter*in (w/m/d) im Bereich Softwareentwicklung (befristet auf 2 Jahre)

Max-Planck-Institut für Radioastronomie, Bad Münstereifel-Effelsberg 30. August 2021

Einsteins glücklichster Gedanke auf dem Prüfstand

2020 Freire, Paulo;  Kramer, Michael

Astronomie Astrophysik

Äußerst präzise Messungen der Bewegung eines schnell drehenden Pulsars in einem Dreifachsternsystem bieten einen zuverlässigen Prüfstand für eine einfache, aber grundlegende Vorhersage der Allgemeinen Relativitätstheorie: Die Schwerkraft beeinflusst alle Objekte mit der gleichen Beschleunigung, ohne Rücksicht auf ihre Zusammensetzung, Dichte oder die Stärke ihres eigenen Gravitationsfelds. Die Allgemeine Relativitätstheorie hat diesen Test, bislang einen der härtesten überhaupt, erneut überstanden. Außerdem schränkt er denkbare alternative Gravitationstheorien stark ein.

mehr

Das erste Bild vom Schatten eines Schwarzen Lochs

2019 Zensus, J. Anton; Kramer, Michael; Menten, Karl M.; Britzen, Silke

Astronomie Astrophysik

Am 10. April 2019 wurde die erste Aufnahme eines Schwarzen Lochs von einem Team von 347 internationalen Wissenschaftlern aus 59 Instituten in 18 Ländern veröffentlicht. Theoretische Arbeiten und indirekte Hinweise zur Existenz von Schwarzen Löchern gab es seit langem. Erst jetzt besaßen die Beobachtungen die notwendige Auflösung für ein Bild, ermöglicht durch eine Kombination von sieben, über die Erde verteilten Radioteleskopen, die das Zentrum der Galaxie M87 beobachteten. Mehr als 30 Mitarbeiter des Max-Planck-Instituts für Radioastronomie in Bonn sind an diesem Erfolg beteiligt.

mehr

Das Flugzeugobservatorium SOFIA enthüllt Gasbewegungen im Lagunennebel

2018 Wyrowsk, F.; Wiesemeyer, H.; Tiwari, M.; Klein, B.; Menten, K.M.

Astronomie Astrophysik

Das Flugzeug-Observatorium SOFIA erlaubt astronomische Beobachtungen im Ferninfrarot-Bereich, der vom Boden aus nicht zugänglich ist. Hier befinden sich die wichtigsten Spektrallinien, die für das Kühlen des interstellaren Mediums verantwortlich sind. Unsere Gruppe hat mit dem upGREAT-Empfänger auf SOFIA die Feinstrukturlinie des ionisierten Kohlenstoffes im Lagunennebel gemessen. Hieraus lassen sich erstmals die Gasbewegungen in der unmittelbaren Umgebung des Nebels ermitteln.

mehr

Zoom ins Herz einer Radiogalaxie

2017 Boccardi, Bia

Astronomie Astrophysik

Die Entstehung relativistischer Jets in aktiven Galaxien ist ein immer noch nicht vollständig verstandener physikalischer Prozess. Entscheidend für die Überprüfung theoretischer Modelle ist die Beobachtung von Strahlung aus der unmittelbaren Umgebung des zentralen Schwarzen Lochs. Dazu wurde die Galaxie Cygnus A mit weltweit vernetzten Radioteleksopen bei Millimeterwellenlängen beobachtet und damit ein hochaufgelöstes Bild des Jet-Fußpunkts erzielt. Die Analyse von Kinematik und interner Struktur zeigen, dass es sich bei dem Jet um einen durch Magnetfelder beschleunigten Scheibenwind handelt.

mehr

Radioblitze aus der Tiefe des Weltalls

2016 Spitler, Laura

Astronomie Astrophysik

Seit zehn Jahre entdecken Radioastronomen immer wieder flüchtige, starke Blitze von Radiowellen, ausgesandt von unbekannten astronomischen Quellen außerhalb unserer eigenen Galaxie. Die Entdeckung dieser sogenannten schnellen Radioblitze, oder FRBs gemäß der Abkürzung im Englischen, hat vor allem deshalb für große Aufregung gesorgt, da die geschätzte Entfernung der FRBs 100 Millionen bis einige Milliarden Lichtjahre beträgt. Es ist ein astrophysikalisches Rätsel, was für eine Quelle einen so starken Radioblitz erzeugen kann.

mehr
Zur Redakteursansicht