Neue Schlüsselfiguren im Methankreislauf
Archaeen haben vermutlich größere Bedeutung für die globale Kohlenstoffbilanz als bislang vermutet
Methan ist nicht nur ein starkes Treibhausgas, sondern auch ein Energieträger. Mikroorganismen nutzen es darum für ihren Stoffwechsel – und zwar viel zahlreicher und vielfältiger als bisher vermutet wurde. Das zeigt eine Studie von Forschern des Max-Planck-Instituts für marine Mikrobiologie in Bremen und der Jiao Tong Universität in Shanghai.
Methan ist ein ganz besonderes Molekül. Es ist als „Klimakiller“ verschrien, Hauptbestandteil von Erdgas, und wir heizen unsere Wohnungen damit. Auch in der Mikrobiologie ist es zentral: Wenn kein Sauerstoff vorhanden ist, können spezielle Mikroorganismen – die sogenannten methanogenen Archaeen – Methan erzeugen. Andere Mikroorganismen wiederum – Archaeen, die mit Bakterien in Symbiose leben – können Methan als Nahrung nutzen.
Egal, ob Methan produziert oder verzehrt wird – immer ist das gleiche Enzym der Schlüssel: die Methyl-Coenzym M-Reduktase (MCR). Dieses Enzym erzeugt Methan und kann dieses Gas auch wieder aufbrechen. Für lange Zeit glaubten Wissenschaftler, dass nur wenige Arten von Mikroben Methan auf die eine oder andere Weise umsetzen können. Nun jedoch mehren sich die Anzeichen, dass wichtige Schlüsselfiguren im Methankreislauf übersehen wurden.
Suche im Sequenz-Heuhaufen
Wissenschaftlerinnen und Wissenschaftler der Jiao Tong Universität in Shanghai, China, und des Max-Planck-Instituts für marine Mikrobiologie wollten das nun genauer wissen. Sie durchsuchten weltweite Genom-Datenbanken, in denen unzählige Informationen zu den bisher in der Umwelt gefunden Genen gesammelt sind, nach neuen Methan-Organismen. Ihr Trick: Sie suchten dabei nicht nach bestimmten Organismen, sondern nach dem Schlüsselenzym.
Bei seiner Suche nach Gensequenzen, die den bekannten MCR-Genen ähneln, wurde Erstautor Yinzhao Wang von der Jiao Tong Universität bald fündig. Er fand eine ganze Reihe bisher unbekannter Gene, die die nötigen Informationen zur Herstellung von MCR tragen. „Diese MCRs lassen sich grob in drei Gruppen einteilen“, so Yinzhao Wang. „Eine Gruppe umfasst die bekannten Gensequenzen. Die anderen beiden Gruppen sind völlig neu.“ Diese neuen Sequenzen dienten den Forschenden als erstes Puzzlestück, um in der Unmenge der vorhandenen Daten möglichst vollständige Genome zu finden. Die Ergebnisse überraschten das Team: Die zusammengepuzzelten Genome unterschieden sich völlig von denen bekannter Methan-Mikroben. „Wir fanden zum Beispiel MCR in Archaeoglobi und auch in Archaeen aus dem TACK-Superstamm. Solche Stoffwechselwege sind bei diesen Organismen bisher nicht vermutet worden“, berichtet Fengping Wang von der Jiao Tong Universität, die Initiatorin der Studie.
Die vorliegenden Ergebnisse zeigen, dass verschiedene Varianten des Methanstoffwechsels in Archaeen weit verbreitet sind. Das deutet darauf hin, dass diese Mikroorganismen eine größere Bedeutung für die globale Kohlenstoffbilanz haben als bislang vermutet.
Neue Arten und Stoffwechselwege
Was die Mikroben mit diesen Stoffwechselwegen im Detail anfangen, ist noch nicht geklärt. Bei einigen Organismen scheint es so zu sein, dass sie Methan erzeugen. Andere scheinen hingegen Methan zu oxidieren. „Unsere Ergebnisse sind sehr spannend! Vermutlich haben wir die ersten Archaeen entdeckt, die Methan ohne Partnerbakterien mit Sulfat veratmen können“, sagt Gunter Wegener vom Bremer Max-Planck-Institut. „Andere ernähren sich offensichtlich nicht von Methan, sondern von anderen Kohlenwasserstoffen.“ Die Genome geben nur Hinweise auf die Lebensweise dieser Archaeen. „Häufig wissen wir nicht, in welche Richtung die Organismen den offensichtlich sehr flexiblen Stoffwechselweg der Methanerzeugung nutzen“, so Wegener weiter.
Um genau zu verstehen, was die gefundenen Organismen treiben, und um die genombasierten Hypothesen zu prüfen, wollen die Forscherinnen und Forscher aus Bremen und Shanghai nun gemeinsam versuchen, diese Organismen zu im Labor zu züchten. Nicht ganz einfach – denn sie scheinen bevorzugt an heißen Quellen und tief im Untergrund der Erde zu leben. Mit Material von diesen Orten werden die Wissenschaftler ihre Kultivierungsversuche beginnen.