Max-Planck-Institut für Chemische Physik fester Stoffe

Max-Planck-Institut für Chemische Physik fester Stoffe

Ziel der Wissenschaftler am Max-Planck-Institut für chemische Physik fester Stoffe in Dresden ist es, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken. Dazu müssen sie die Zusammenhänge zwischen atomarem Aufbau, chemischer Bindung, Elektronenzustand und den Eigenschaften einer Verbindung grundlegend verstehen. Gegenstand der Forschung am Institut sind Verbindungen, die aus verschiedenen Metallen bestehen. Chemiker und Physiker, Experimentatoren und Theoretiker untersuchen mit modernsten Instrumenten und Methoden, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf das Verhalten der Elektronen auswirken. Denn diese sind für die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen – und damit für deren Einsatzmöglichkeiten als Werkstoff – verantwortlich.

Kontakt

Nöthnitzer Str. 40
01187 Dresden
Telefon: +49 351 4646-0
Fax: +49 351 4646-10

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS for Chemistry and Physics of Quantum Materials

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren und Forschungsgruppenleitern.

Exotische Inseln für magnetische Festplatten

Antiskyrmionen könnten einen Datenspeicher ermöglichen, der schnell, robust und sparsam im Energieverbrauch ist

mehr
MaxPlanck@TUM auf Kurs

Premiere für „MaxPlanck@TUM“: Sieben herausragende Wissenschaftlerinnen und Wissenschaftler wurden nun als Max-Planck-Forschungsgruppenleiter und gleichzeitig als Tenure-Track-Professoren der TUM berufen.

mehr

Das Heusler-Projekt soll Permanentmagnete hervorbringen, die anders als heutige Dauermagnete nur gut verfügbare Metalle enthalten

mehr
Mit 300 Kilometern pro Sekunde zu neuer Elektronik

Ein Material mit superschnellen Elektronen, das den Riesenmagneto-Widerstand zeigt, könnte sich für elektronische Bauteile eignen.

mehr

Neue Legierungen, die sich stark magnetisieren lassen, ermöglichen höhere Speicherdichten auf Festplatten

mehr

Technischer Fortschritt wird oft erst durch neue Materialien möglich, sei es in der Energieversorgung oder in der Informationstechnologie. Mit den Heusler-Verbindungen hat Claudia Felser, Direktorin am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden, eine Fundgrube für Stoffe aufgetan, die mit vielversprechenden Eigenschaften für diverse Anwendungen aufwarten.

Selbst der effizienteste Motor erzeugt mehr Wärme als Antrieb. Doch einen Teil dieser ungenutzten Energie könnten thermoelektrische Generatoren in Strom verwandeln. Dieses Ziel verfolgen Juri Grin und seine Mitarbeiter am Max-Planck-Institut für chemische Physik fester Stoffe in Dresden. Sie suchen nach Materialien, die sich dafür besonders gut eignen.

Seit ihrer Entdeckung vor 100 Jahren wecken Supraleiter die Hoffnung, dass sie Strom ohne Verlust leiten könnten. Aber wie verlieren unkonventionelle Supraleiter ihren Widerstand?

Strom aus heißer Luft

MPF 4 /2010 Material & Technik

Selbst der effizienteste Motor erzeugt mehr Wärme als Antrieb. Doch einen Teil dieser ungenutzten Energie könnten thermo-elektrische Generatoren in Strom verwandeln. Forscher suchen nach geeigneten Materialien.

Sie heißen Otoconien – winzige Kristalle, die im Gleichgewichtsorgan für Balance sorgen. Ein guter Grund, die Steinchen im Detail zu untersuchen.

Elektronische Quantenmusik

2018 Hassinger, Elena

Chemie Festkörperforschung Materialwissenschaften Plasmaphysik Quantenphysik Teilchenphysik

Jedes Musikinstrument hat seinen eigenen Klang, dessen Frequenzspektrum durch die Form des Instruments zustandekommt. Ähnlich dazu existiert auch in jedem Metall ein charakteristisches Frequenzspektrum, das die Eigenschaften der Elektronen darin widerspiegelt. Unsere Studie des Quantensounds der Elektronen in dem Metall PdRhO2 zeigt, dass diese sich in den Kristallebenen erstaunlich schnell, senkrecht dazu aber sehr schlecht bewegen. Die elektronische Quantenmusik klingt etwas anders als erwartet und hilft uns, die besonderen Transporteigenschaften dieser Metalle zu verstehen

mehr

Kovalenz und Ionizität in Verbindungen mit MgAgAs-Struktur: Von Konzepten zur Strukturvorhersage

2017 Wagner, Frank R.; Bende, David; Grin, Yuri

Chemie Festkörperforschung Materialwissenschaften Plasmaphysik Quantenphysik Teilchenphysik

Die Analyse der chemischen Bindung in Verbindungen vom MgAgAs-Typ mittels chemischer Bindungsindikatoren im Ortsraum führte zu einer Verallgemeinerung der 8–N-Regel für Wechselwirkungen beliebiger Polarität. Ortsraum-Indikatoren ermöglichen eine Quantifizierung von Ionizität und Kovalenz, die zur Erklärung der unterschiedlichen Lage-Präferenz in Hauptgruppen- und Übergangsmetallverbindungen vom MgAgAs-Typ beitragen. Auf dieser Basis konnten aussichtsreiche Kandidaten für neue Verbindungen vom MgAgAs-Typ vorgeschlagen werden, die mehrheitlich durch Präparation bestätigt wurden.

mehr

Topologische Weyl-Semimetalle

2016 Yan, Binghai; Felser, Claudia

Chemie Festkörperforschung Quantenphysik

Vor wenigen Jahren fanden theoretische Physiker heraus, dass die Topologie eines Materials zu neuen Quanteneigenschaften führen kann. Dieses einfache Konzept lässt sich auf die elektronische Struktur von halbleitenden Materialien anwenden, in denen relativistische Effekte wichtig sind. 2015 wurden verschiedene Materialien wie NbP, NbAs, TaP, TaAs und MoTe2 als vielversprechende, sogenannte Weyl-Semimetalle theoretisch vorhergesagt und daraufhin physikalisch untersucht. Das Besondere ist, dass Weyl-Fermionen, die in diesen Materialien als Quasiteilchen auftreten, in zwei Chiralitäten vorkommen.

mehr

Den elektrischen Eigenschaften topologischer Isolatoren auf der Spur

2015 Höfer, Katharina; Becker, Christoph; Rata, Diana; Swanson, Jesse; Thalmeier, Peter; Tjeng, Liu Hao

Chemie Festkörperforschung

Mit der Entdeckung der topologischen Isolatoren wurden neue Wege zur Erzeugung einzigartiger Quantenteilchen eröffnet. Theoretiker haben viele spannende Experimente vorgeschlagen. Deren experimentelle Prüfung steht allerdings noch aus, ganz zu schweigen von Anwendungen. Das Haupthindernis ist die zusätzliche Leitfähigkeit, bedingt durch unvermeidbare Kristalldefekte sowie die Verunreinigung der Oberflächen. Für dünne Schichten von Bi2Te3 ist jedoch die nötige Qualität erreichbar, wenn die Herstellung und besonders die gesamte Charakterisierung im Ultrahochvakuum stattfinden.

mehr

Vom Palladium zum edelmetallfreien Hydrierkatalysator – intermetallische Verbindungen in der Katalyse

2014 Armbrüster, Marc; Kovnir, Kyrill; Friedrich, Matthias; Grin, Yuri

Chemie Festkörperforschung Materialwissenschaften

Ein wissensbasiertes Konzept hat sich als effiziente Strategie zur Entwicklung innovativer Katalysatormaterialien erwiesen. Das Verständnis der Kristallstrukturen und der atomaren Wechselwirkungen der intermetallischen Verbindungen erlaubt die Auswahl geeigneter intermetallischer Verbindungen als effektive Katalysatoren. Im Gegensatz zum weit verbreiteten trial-and-error-Ansatz stellt die wissensbasierte Entwicklung eine vorteilhafte Alternative dar, die das Anwendungspotenzial intermetallischer Verbindungen in der heterogenen Katalyse aufzeigt.

mehr
Zur Redakteursansicht