Das Max-Planck-Institut gibt es nicht – tatsächlich ist die Max-Planck-Gesellschaft Träger einer Vielzahl von Forschungseinrichtungen in Deutschland, aber auch im Ausland. In der Auswahl und Durchführung ihrer Forschungsaufgaben sind die Max-Planck-Institute frei und unabhängig. Sie verfügen daher über einen eigenen, selbst verwalteten Haushalt, der durch Projektmittel von dritter Seite ergänzt werden kann. Die Forschung am Institut muss den wissenschaftlichen Exzellenzkriterien der Max-Planck-Gesellschaft genügen, was durch regelmäßige Evaluation überprüft wird. Die Max-Planck-Institute forschen im Bereich der Lebens-, Natur- und Geisteswissenschaften, vielfach auch interdisziplinär. Ein einzelnes Institut lässt sich daher kaum einem einzigen Forschungsgebiet zuordnen, umgekehrt arbeiten verschiedene Max-Planck-Institute durchaus auch auf demselben Forschungsgebiet.
Die Materie im Raum zwischen den Galaxien bildet ein gewaltiges Netzwerk verbundener Filamente. Fast alle Atome im Universum sind Teil dieses kosmischen Netzwerks – die meisten davon direkte Überbleibsel der Urknallphase. Jetzt hat ein Team unter Leitung des MPI für Astronomie erstmals die Feinstruktur dieses Netzwerks rund 2 Milliarden Jahre nach dem Urknall vermessen: mit einer neuen Methode, die das Netzwerk mithilfe von Paaren sehr heller, nahe beieinander stehender Quasare durchleuchtet. Die Ergebnisse helfen, die sogenannte Reionisierungsära der kosmischen Geschichte zu rekonstruieren.
Astronomen der McMaster University und des Max-Planck-Instituts für Astronomie haben ein stimmiges Szenario für die Entstehung von Leben auf der Erde berechnet, das auf astronomischen, geologischen, chemischen und biologischen Modellen basiert. In diesem Szenario formt sich das Leben nur wenige hundert Millionen Jahre, nachdem die Erdoberfläche soweit abgekühlt war, dass flüssiges Wasser existieren konnte. Die wesentlichen Bausteine für das Leben wurden während der Entstehung des Sonnensystems im Weltraum gebildet und durch Meteoriten in warmen kleinen Teichen auf der Erde deponiert.
Am 17. August 2017 wurden erstmals zwei verschmelzende Neutronensterne durch ihr Gravitationswellensignal beobachtet. Nachfolgende Beobachtungen zeigten eine optische Emission, hervorgerufen durch den radioaktiven Zerfall von r-Prozess-Elementen. Die Modellierung der Lichtkurve und des Spektrums dieser sogenannten Kilonova belegen, dass diese Art von Sternkollisionen der kosmische Ursprung von schweren Elementen wie Gold und Platin sein kann.
Unter Zuhilfenahme von Galaxien als riesige Gravitationslinsen führte eine internationale Gruppe von Astronomen, darunter Forscher am Max-Planck-Institut für Astrophysik, eine unabhängige Messung durch, wie schnell sich das Universum ausdehnt. Die neu gemessene Expansionsrate für das lokale Universum steht dabei im Einklang mit früheren Messungen. Erstaunlicherweise stimmen diese jedoch nicht mit Messungen aus dem frühen Universum überein. Dies deutet auf ein grundsätzliches Problem bei unserem Verständnis des Kosmos hin.
Mit Modellen und neuen Computeralgorithmen untersuchten Forscher am Magdeburger Max-Planck-Institut fünf der wichtigsten biotechnologischen Produktionsorganismen (wie Escherichia coli und Bäckerhefe) daraufhin, ob sich das Wachstum der Zellen mit der Produktion von (Bio)- Chemikalien koppeln lässt. Die Berechnungen zeigen, dass für fast jedes Stoffwechselprodukt geeignete genetische Interventionen existieren, mit denen eine Kopplung der Synthese des Produkts mit dem Zellwachstum möglich ist. Die Studie trägt grundlegend zur Entwicklung von neuen biotechnologischen Prozessen bei.