Max-Planck-Institut für Astronomie

Max-Planck-Institut für Astronomie

Die Astronomie ist eine der ältesten Naturwissenschaften – und gleichzeitig eine der modernsten. Das beweist das Max-Planck-Institut für Astronomie in Heidelberg. Dort entschlüsseln Forscher die Rätsel des Universums mit Hightech-Geräten, bauen trickreiche Zusatzgeräte und Detektoren für Teleskope und Satelliten, die das Licht aus kosmischen Quellen nach allen Regeln der physikalischen Kunst untersuchen. Zu den Objekten wissenschaftlicher Neugierde zählen etwa junge Sterne und die Geburt von Planetensystemen. „Ist die Erde der einzige belebte Ort im Weltall?“, so lautet eine der brennenden Fragen der Forschung. Aber auch in den Tiefen von Raum und Zeit sind die Max-Planck-Astronomen unterwegs, untersuchen aktive Galaxien und Quasare, um sich ein Bild von Beginn und Entwicklung des heute so reich strukturierten Universums zu machen.

Kontakt

Königstuhl 17
69117 Heidelberg
Telefon: +49 6221 528-0
Fax: +49 6221 528-246

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS for Astronomy and Cosmic Physics

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Abteilung Stern- und Planetenentstehung

mehr

Abteilung Atmosphärenphysik der Exoplaneten

mehr

Abteilung Galaxien und Kosmologie

mehr

Ein ferner Planet ist von Material umgeben, aus dem sich mindestens ein Trabant bilden könnte

mehr

In der Hülle eines 300 Lichtjahre entfernten Exoplaneten gelingt die erste Messung von Kohlenstoff-13

mehr

Neu entdeckte Eis-Eigenschaften zeigen, wie im Weltraum organische Moleküle entstehen könnten

mehr

Im Citizen-Science-Projekt „Quallen-Galaxien“ können Interessierte mithelfen, die Entstehungsgeschichte dieser kosmischen Objekte zu erforschen

mehr

Die kosmischen Massemonster machen in Satellitengalaxien den Weg frei für die Entstehung neuer Sonnen

mehr

Sterne sammeln sich in Galaxien mit völlig unterschiedlichen Formen und Größen. Es gibt elliptische, kugel-, linsen- und spiralförmige Galaxien, manche haben gar keine regelmäßige Gestalt. Nach den Ursachen dieser Vielfalt suchen Nadine Neumayer am Max-Planck-Institut für Astronomie in Heidelberg und Ralf Bender am Max-Planck-Institut für extraterrestrische Physik in Garching. Einen entscheidenden Akteur haben sie bereits ausgemacht: dunkle Materie.

Mit bisher unerreichter Präzision vermisst das europäische Weltraumteleskop Gaia an die zwei Milliarden Sterne – ein Datenschatz, der schon jetzt unser Bild der Milchstraße verändert. Ein Mann der ersten Stunde ist Coryn Baile-Jones vom Max-Planck-Institut für Astronomie in Heidelberg. Er hat einen Teil des Himmelskatalogs erstellt und darin unter anderem auch nach Sternen gesucht, die unserem Sonnensystem sehr nahe gekommen sind oder dies zukünftig tun werden.

Sie sahen aus wie überdimensionierte Garnrollen, steckten voller Technik aus mehreren Max-Planck-Instituten und sollten unser Verständnis der Sonne und des interplanetaren Mediums erheblich erweitern: Vor mehr als 40 Jahren wurden die beiden Helios-Sonden gestartet und auf eine gewagte Mission in die Hitze unseres Heimatsterns geschickt. Die beiden Raumfahrzeuge stehen aber auch für eine erfolgreiche wissenschaftliche Zusammenarbeit über Ländergrenzen hinweg.

Wie entstand das Leben auf der Erde? Dieser wahrlich existenziellen Frage widmen sich Wissenschaftler der „Heidelberg Initiative for the Origins of Life“. Sie gehen sogar noch einen Schritt weiter und untersuchen die Bedingungen, unter denen Leben entstehen kann. Gegründet von Thomas Henning, Direktor am Heidelberger Max-Planck-Institut für Astronomie, vereint die Initiative Forscher aus Chemie, Physik sowie den Geo- und Biowissenschaften.

Er liebt Basketball und Literatur, seine wahre Leidenschaft aber ist die Kosmologie. Mit Teleskopen und Computern erforscht Joe Hennawi am Heidelberger Max-Planck-Institut für Astronomie – in einer Gruppe namens Enigma – die größten Strukturen des Weltalls. Dabei geht es um nicht weniger als die Enthüllung des kosmischen Netzes.

Momentan sind keine Angebote vorhanden.

Kosmischer Stoßverkehr in der Stern- und Planetenentstehung

2020 Henshaw, Jonathan D.

Astronomie Astrophysik

In riesigen interstellaren Gaswolken bewegen sich Gas und Staub in einem komplexen Netzwerk aus Filamenten zu den Ballungszentren, wo sich die Materie zu Sternen und Planeten verdichtet. Unsere Gruppe hat die Bewegung von Gas gemessen, das von der Dimension einer Galaxie bis hinunter zu den kleinsten Verdichtungen reicht. Es zeigte sich,  dass Gas, das alle Hierarchieebenen durchdringt, dynamisch miteinander verbunden ist: Während die Stern- und Planetenentstehung auf den kleinsten Skalen stattfindet, wird dieser Prozess auf größerer Skala durch eine Kaskade von Materieströmen gesteuert.

mehr

Galaktische Förderbänder füttern Sternentstehung

2019 Dr. Juan Diego Soler

Astronomie Astrophysik

Die Rolle von Magnetfeldern bei der Entstehung von Sternen wird seit Jahrzehnten diskutiert. Jetzt hat eine Studie am Max-Planck-Institut für Astronomie gezeigt, dass Magnetfelder die Verdichtung von interstellarer Materie begünstigen und vorantreiben können – eine Vorbedingung für die Entstehung von Sternen. Diese Schlussfolgerung ergibt sich aus dem Befund, dass sich die interstellare Materie abhängig von ihrer Dichte mal parallel mal eher senkrecht zu den Magnetfeldlinien ausrichtet.

mehr

Astronomen werden Zeugen der Geburt eines Planeten

2018 Keppler, M.; Müller, A.

Astronomie Astrophysik

Wissenschaftler des Max-Planck-Instituts für Astronomie (MPIA) und des Konsortiums des SPHERE-Instruments am Very Large Telescope der Europäischen Südsternwarte (ESO) haben einen extrem jungen Exoplaneten im Stadium seiner Entstehung entdeckt und charakterisiert. Der Gasriese mit der Bezeichnung PDS 70 b wurde innerhalb einer Lücke der proto­planetaren Scheibe des Sterns PDS 70 nachgewiesen. Damit befindet sich PDS 70 b noch in der Umgebung seiner Entstehung und dürfte nach wie vor neue Materie auf sich ziehen.

mehr

Migration der Sterne

2018 Bergemann, Maria

Astronomie Astrophysik

Forscher unter der Leitung von Maria Bergemann vom Max-Planck-Institut für Astronomie haben eine Gruppe von Sternen im Umfeld der Milchstraße untersucht und dabei festgestellt, dass ihre chemische Zusammensetzung derjenigen der galaktischen Scheibe ähnelt. Daraus schließen sie, dass die Sterne ursprünglich aus dem Inneren der Scheibe stammen und nicht etwa aus eingefangenen Satellitengalaxien. Als Auslöser dieser stellaren Migration vermuten die Wissenschaftler eine Schwingung der Milchstraßenscheibe – wahrscheinlich verursacht durch die Gezeitenwirkung einer vorbeiziehenden Satellitengalaxie.

mehr

Wie die Bausteine des Lebens aus dem Weltall auf die Erde kamen

2017 Dmitry Semenov; Thomas K. Henning

Astronomie Astrophysik

Astronomen der McMaster University und des Max-Planck-Instituts für Astronomie haben ein stimmiges Szenario für die Entstehung von Leben auf der Erde berechnet, das auf astronomischen, geologischen, chemischen und biologischen Modellen basiert. In diesem Szenario formt sich das Leben nur wenige hundert Millionen Jahre, nachdem die Erdoberfläche soweit abgekühlt war, dass flüssiges Wasser existieren konnte. Die wesentlichen Bausteine für das Leben wurden während der Entstehung des Sonnensystems im Weltraum gebildet und durch Meteoriten in warmen kleinen Teichen auf der Erde deponiert.

mehr
Zur Redakteursansicht