Max Planck Institute for Astronomy

Max Planck Institute for Astronomy

Astronomy is one of the oldest sciences – and yet also one of the most modern. The Max Planck Institute for Astronomy in Heidelberg is proof of this. The researchers here decipher the mysteries of the universe with high-tech instruments, constructing clever add-ons and detectors for telescopes and satellites which examine the light from cosmic sources according to all the laws of physics. Infant stars and the birth of planetary systems are but two objects of their scientific curiosity. “Is Earth the only inhabited place in the universe?” is one of their burning research questions. The Max Planck astronomers also travel through the depths of space and time, investigating active galaxies and quasars to gain an idea of the beginning and the development of today’s richly structured universe.


Königstuhl 17
69117 Heidelberg
Phone: +49 6221 528-0
Fax: +49 6221 528-246

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS for Astronomy and Cosmic Physics

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Planet and Star Formation


Department Atmospheric Physics of Exoplanets


Department Galaxies and Cosmology

Rays of light lead from an orange disc with a bright yellow centre at the bottom right into the upper left half of the picture, which is criss-crossed by differently coloured streaks against a background of stars.

Planets like our Earth, including planets with water, could form even in the harshest known star-forming environments, drenched by hard UV light from massive stars.

Large, full-size yellow-red glowing fireball against a black background with a smaller, similar-looking ball standing in the centre left of the large ball

Data of the James Webb Space Telescope contain signatures of water vapour, sulfur dioxide and sand clouds

A tidy-looking picture with elliptical, bluish glowing spots of various sizes in the foreground, some with recognisable structures reminiscent of a vortex, against a black background with scattered sharp, bluish dots and yellowish diffuse spots.

Euclid space telescope delivers first scientific images

Close-up of two people in surgical clothing and FFP masks working on a shiny, bright metal apparatus. On the left of the picture is an optical lens, about the size of the palm of the hand, set in a metal frame, on the right is the metal frame on which the lens system is to be placed.

The Euclid space telescope contains technology from two Max Planck Institutes

Show more

The galaxies we see around us have had a turbulent past, full of collisions, plentiful gas flows, and bursts of increased star formation. Our home galaxy is no exception. A team led by Hans-Walter Rix at the Max Planck Institute for Astronomy is reconstructing the Milky Way’s history in a process that resembles archaeological research.

Six months after its launch, the James Webb telescope has delivered its first images, revealing fascinating insights into distant galaxies as well as turbulent scenarios encompassing the birth and death of stars. The space observatory has also captured the spectra of exoplanets. The Max Planck Institute for Astronomy in Heidelberg was involved in building the instruments.

Two years ago, a new department opened at the Max Planck Institute for Astronomy in Heidelberg in which researchers study the atmospheres of extrasolar planets. Its young director, Laura Kreidberg, has made a name for herself with some of the first observations of these worlds and is one of the lucky ones who will get to observe with the new James Webb Space Telescope.

The chemistry of a star contains valuable information such as its history or affiliation with a particular stellar population. But accurate detection of abundances of chemical elements based on spectral fingerprints require highly sophisticated methods. Maria Bergemann from the Max Planck Institute for Astronomy in Heidelberg has set new standards here.

Stars cluster in galaxies of dramatically different shapes and sizes: elliptical galaxies, spheroidal galaxies, lenticular galaxies, spiral galaxies, and occasionally even irregular galaxies. Nadine Neumayer at the Max Planck Institute for Astronomy in Heidelberg and Ralf Bender at the Max Planck Institute for Extraterrestrial Physics in Garching investigate the reasons for this diversity. They have already identified one crucial factor: dark matter.

Postdoctoral Positions (m/f/d) | Planet and Star Formation

Max Planck Institute for Astronomy, Heidelberg November 23, 2023

Operations IT-Engineer (m/f/d)

Max Planck Institute for Astronomy, Heidelberg November 15, 2023

The exotic weather of the hot Jupiter WASP-121 b

2022 Thomas Mikal-Evans

Astronomy Astrophysics

Through observations of the exoplanet WASP-121 b with the Hubble Space Telescope, we have studied the atmospheric conditions on the night side of a hot Jupiter in detail for the first time. Incorporating measurements from the dayside, we determined the temperature profile in the stratosphere and an unusual water cycle between the two hemispheres. This study is a significant step towards deciphering the global matter and energy cycles in the atmospheres of exoplanets.


Raw material for new stars

2021 Syed, Jonas

Astronomy Astrophysics

From the data of the THOR survey led at the Max Planck Institute for Astronomy (MPIA), we have identified one of the longest known structures in the Milky Way, stretching some 3900 light years and consisting almost entirely of atomic hydrogen gas. This filament, called Maggie, could represent a link in the stellar matter cycle. Our analysis suggests that locally the atomic gas binds to molecular hydrogen there. Compressed in large clouds, this material ultimately forms stars.


How to weigh a quasar

2021 Dr. Felix Bosco, Dr. Jörg-Uwe Pott

Astronomy Astrophysics

We have successfully tested the performance of a new method for determining the masses of extreme black holes in quasars, called spectroastrometry, for the first time through observations. It measures radiation coming from gas in the vicinity of supermassive black holes. Compared to other weighing techniques, it is relatively straightforward and efficient to perform using modern large telescopes. Its high sensitivity makes it possible to study the surroundings of luminous quasars and supermassive black holes in the early Universe.


The cosmic commute towards star and planet formation

2020 Henshaw, Jonathan D.

Astronomy Astrophysics

The molecular material in giant molecular gas clouds travels along intricate networks of filamentary gas lanes towards the congested centres of gas and dust where it is compressed into stars and planets. Astronomers have measured the motion of gas flowing from galaxy scales down to the dimensions of the gas clumps within which individual stars form. Their results show that the gas pervading each scale is dynamically interconnected: while star and planet formation occurs on the smallest dimensions, this process is controlled by a cascade of matter flows that begin on galactic scales.


Galactic conveyor belts feed star formation

2019 Dr. Juan Diego Soler

Astronomy Astrophysics

The role of magnetic fields in the formation of stars has been a hot topic among astrophysicists for decades. Now Juan Diego Soler of the Max Planck Institute for Astronomy (MPIA) has shown that magnetic fields can favour and advance the compression of interstellar matter – a prerequisite for the formation of stars. This conclusion is based on the finding that in star forming regions the interstellar matter, depending on its density, is sometimes oriented parallel to, sometimes rather perpendicular to, the magnetic field lines.

Go to Editor View