Das Max-Planck-Institut gibt es nicht – tatsächlich ist die Max-Planck-Gesellschaft Träger einer Vielzahl von Forschungseinrichtungen in Deutschland, aber auch im Ausland. In der Auswahl und Durchführung ihrer Forschungsaufgaben sind die Max-Planck-Institute frei und unabhängig. Sie verfügen daher über einen eigenen, selbst verwalteten Haushalt, der durch Projektmittel von dritter Seite ergänzt werden kann. Die Forschung am Institut muss den wissenschaftlichen Exzellenzkriterien der Max-Planck-Gesellschaft genügen, was durch regelmäßige Evaluation überprüft wird. Die Max-Planck-Institute forschen im Bereich der Lebens-, Natur- und Geisteswissenschaften, vielfach auch interdisziplinär. Ein einzelnes Institut lässt sich daher kaum einem einzigen Forschungsgebiet zuordnen, umgekehrt arbeiten verschiedene Max-Planck-Institute durchaus auch auf demselben Forschungsgebiet.
Molekulare Simulationen ermöglichen es, die Funktionsweise von Biomolekülen zu untersuchen. Dank ihrer enorm detaillierten Beschreibung, in der die Bewegung jedes einzelnen Atoms aufgelöst wird, gestattet die Simulation Interpretationen komplexer Experimente. Solche Simulationen ermöglichen es zudem, in Bereiche vorzudringen, die dem Experiment weitgehend verschlossen sind, etwa der detaillierten Auflösung von enzymatischen Reaktionsmechanismen. Außerdem können dank molekularer Simulationen durch Beobachtung von Proteinen „bei der Arbeit“ neuartige, fundamentale Prozesse entdeckt werden.
Die heutige Artenvielfalt ist das Resultat eines langen Prozesses aus Entstehung und Aussterben von Arten. Der Verlauf dieses Prozesses lässt sich mithilfe von Fossiliendatenbanken nachvollziehen. Ein neues mathematisches Modell des Netzwerkes von Abhängigkeiten zwischen den Arten hilft, die Mechanismen dieses Prozesses besser zu verstehen. Das Modell kann z. B. erklären, unter welchen Bedingungen das Aussterben einzelner Arten ein Massenaussterben auslösen kann und weshalb die Artenvielfalt im Meer und auf dem Land einem qualitativ unterschiedlichen Wachstum folgt.
Zur Herstellung von in großen Mengen benötigten Grundchemikalien werden überwiegend Verfahren entwickelt, welche unterbrechungsfrei (kontinuierlich) Produkte bereitstellen. In der Feinchemie und in der pharmazeutischen Industrie dominiert dagegen gegenwärtig die chargenweise Produktion, die durch Totzeiten, schwankende Produktqualitäten und geringe Produktivität gekennzeichnet ist. In diesem Beitrag werden ausgewählte Ergebnisse aus mehreren Forschungsprojekten zusammengefasst, die zur weiteren Verbreitung von kontinuierlichen Herstellungsverfahren beitragen.
Der stetig ansteigende Energieverbrauch und die Abnahme fossiler Brennstoffe erfordert die Erforschung alternativer, kostengünstiger und umweltverträglicher Materialien für die Energiegewinnung und -speicherung. Hierfür eignen sich diverse nanostrukturierte Materialien. Der Zusammenhang zwischen Morphologie, chemischer Zusammensetzung und Eigenschaften der Nanostrukturen wird mithilfe der analytischen Transmissionselektronenmikroskopie (TEM) in der unabhängigen Forschungsgruppe „Nanoanalytik und Grenzflächen“ am Max-Planck-Institut für Eisenforschung untersucht.
Zukünftig kann es wirtschaftlicher und umweltfreundlicher sein, Wasserstoff als Energieträger zu nutzen. Viele Mikroorganismen sind dieser Technik weit voraus. Sie nutzen das Enzym Hydrogenase für den Wasserstoffzyklus, das häufig vorkommende Metalle wie Eisen und Nickel enthält und den Einsatz von Edelmetallen wie Platin vermeidet. Durch die Erkenntnis, wie diese Enzyme arbeiten, erhalten Wissenschaftler Hinweise für die Synthese halbkünstlicher Hydrogenasen und können zur besseren Leistungsfähigkeit dieser Enzyme beim Einsatz in der anspruchsvollen Umgebung der Brennstoffzelle beitragen.