Max-Planck-Institut für terrestrische Mikrobiologie

Max-Planck-Institut für terrestrische Mikrobiologie

Ziel des Max-Planck-Instituts für terrestrische Mikrobiologie ist es, die Funktion, Kommunikation und Interaktion von Mikroorganismen mit ihrer Umwelt zu verstehen, mit Hilfe mathematischer Modelle zu beschreiben und durch synthetisch-biologische Ansätze gezielt zu verändern. Welche Mechanismen befähigen Mikroben zu ihren enorm diversen Stoffwechselleistungen in den globalen Stoffkreisläufen? Welche relevanten Naturstoffe bilden sie? Wie sind sie in der Lage, sich den Veränderungen der Umwelt anzupassen? Welche Mechanismen liegen dem Zellzyklus und der Zellpolarität mikrobieller Lebewesen zugrunde? Wie interagieren Mikroben untereinander und mit anderen Organismen wie Pflanzen und Tieren? Wie können ihre metabolischen Eigenschaften gezielt verändert und genutzt werden, um aktuellen Herausforderungen, wie z.B. der globalen Erwärmung oder der Antibiotikakrise, zu begegnen? Diesen und anderen Fragen widmet sich das Max-Planck-Institut für terrestrische Mikrobiologie durch umfassende Grundlagenforschung, von der atomaren Ebene bis hin zum Ökosystem.

Kontakt

Karl-von-Frisch-Str. 10
35043 Marburg
Telefon: +49 6421 178-0
Fax: +49 6421 178-999

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

Principles of Microbial Life: From molecules to cells, from cells to interactions

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Abteilung Biochemie und synthetischer Metabolismus

mehr

Abteilung Naturstoffe in Organismischen Interaktionen

mehr

Pflanzenschädling braucht membrangebundenen Proteinkomplex, um virulent zu sein

mehr

Studie zeigt auf, wie sich krankmachende Bakterien an die Bedingungen des Verdauungstraktes anpassen können

mehr

Neuer synthetischer Stoffwechselweg ist eine Alternative zur pflanzlichen Photorespiration

mehr

Ein universeller biochemischer Mechanismus steht hinter der Evolution funktionsloser komplexer Proteine

mehr

Mehr als 50 Millionen Gene, 40 000 Proteine – für Tobias Erb und seine Kollegen vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg war die Auswahl in internationalen Datenbanken gewaltig. Am Ende haben die Wissenschaftler gerade mal 17 Enzyme für den ersten künstlichen Stoffwechselweg herausgepickt, der Kohlendioxid in andere organische Moleküle umwandeln kann. Nun müssen sie zeigen, dass der am Reißbrett entworfene Zyklus auch in einer lebenden Zelle funktioniert.

Methan oxidierende Bakterien spielen eine bedeutsame Rolle für unser Klima. Wie wichtig der Schutz jener Biotope sein könnte, die eine Heimstatt für diese Mikroben sind, machen Forschungsarbeiten im europäischen Projekt METHECO deutlich.

Zum Klimaschutz gehört auch, die Biotope Methan oxidierender Bakterien zu schützen.

Momentan sind keine Angebote vorhanden.

Ein neues Puzzleteil im globalen Kohlenstoffzyklus

2019 Schada von Borzyskowski, Lennart; Erb, Tobias J.

Mikrobiologie Ökologie

Glycolsäure, ein direktes Nebenprodukt der Fotosynthese, ist eine der wichtigsten Verbindungen im Kohlenstoffzyklus der Ozeane. Marine Bakterien wandeln den darin enthaltenen Kohlenstoff teilweise wieder in Kohlendioxid um, doch sein genaues Schicksal blieb bislang unbekannt. Wie sich nun zeigte, stellt der lang vergessene BHA-Zyklus den bedeutendsten Abbauweg für Glycolsäure weltweit dar. Unsere eingehende, multidisziplinäre Analyse dieses Stoffwechselweges ermöglicht eine Neubewertung der globalen Kohlendioxidbilanz.

mehr

Einblicke in das tiefste Innere von lebenden Zellen

2018 Endesfelder, Ulrike

Mikrobiologie

Hochauflösende Einzelmolekül-Mikroskopie eröffnet ungeahnte Einblicke in lebende Zellen, sie ist jedoch in der Praxis  oft noch mit Schwierigkeiten verbunden. Durch die Verbesserung einer bedeutenden Fluorophoregruppe konnten wir die Schädlichkeit des Verfahrens für die zu untersuchenden Zellen stark reduzieren und gleichzeitig eine neuartige, aberrationsfreie Mehrfarbenstrategie etablieren. Diese ermöglicht unter anderem die vierdimensionale Rekonstruktion von Multi-Proteinkomplexen wie dem Kinetochor von Schizosaccharomyces pombe.

mehr

Die Schlüsselenzyme der biologischen Methanbildung

2017 Shima, Seigo

Mikrobiologie Ökologie

Methan ist ein Endprodukt des anaeroben Abbaus von organischem Material und ein starkes Treibhausgas. Etwa die Hälfte der weltweiten Methanemissionen wird von methanogenen Archaeen durchgeführt. Wir interessieren uns für die an der hydrogenotrophen Methanogenese beteiligten Enzyme und berichten über die Kristallstrukturen der Formyl-Methanofuran-Dehydrogenase und des Heterodisulfid-Reduktase/Hydrogenase-Komplexes. Diese Enzymkomplexe sind an den sequentiellen Reaktionen der Ferredoxin-Reduktion und CO2-Reduktion/Fixierung im methanogenen Stoffwechselweg beteiligt.

mehr

Synthetische Kohlenstoffdioxid-Fixierung

2016 Erb, Tobias

Genetik Mikrobiologie Ökologie

Die Umwandlung des Treibhausgases Kohlenstoffdioxid (CO2) in organische Verbindungen ist ein Schlüsselprozess im globalen Kohlenstoffkreislauf. In den letzten Jahren wurden mehrere neue Stoffwechselwege und Enzyme zur CO2-Bindung in Mikroorganismen entdeckt. Parallel zu diesen Entdeckungen wurden Ansätze vorangetrieben, mit Hilfe synthetischer Biologie künstliche Stoffwechselwege zur Kohlenstoff-Fixierung zu realisieren, die effizienter als die natürlich existierenden Stoffwechselwege sind. Die synthetische CO2-Fixierung könnte neue Anwendungen in Bio- und Nanotechnologie ermöglichen.

mehr

Architektur bakterieller Gemeinschaften

2015 Drescher, Knut

Entwicklungsbiologie Mikrobiologie Ökologie

Viele bakterielle Spezies besiedeln Oberflächen und bilden dicht gepackte Gemeinschaften, die als Biofilme bezeichnet werden. Solche Biofilme sind resistent gegen Antibiotika und machen einen Großteil der globalen bakteriellen Biomasse aus. Über den Entstehungsprozess von Biofilmen ist bisher nur wenig bekannt. Während des Prozesses, der mit der Oberflächenhaftung einer einzigen Zelle beginnt und nach vielen Zellteilungen zur Bildung von turmförmigen Strukturen führt, ändert sich die Biofilmarchitektur in einigen kritischen Phasen dramatisch, wie kürzlich entdeckt wurde.

mehr
Zur Redakteursansicht