Max-Planck-Institut für terrestrische Mikrobiologie

Max-Planck-Institut für terrestrische Mikrobiologie

Die Aufgabenstellung des Instituts ist es, die Funktionsweise von Mikroorganismen auf molekularer, zellulärer und ökologischer Ebene zu verstehen. Die Wissenschaftler des Instituts beschäftigen sich zum einen damit, was der Stoffwechselvielfalt von Mikroorganismen zugrunde liegt. Zum anderen analysieren sie die Mechanismen, die es Mikroorganismen ermöglichen, sich wechselnden Umwelteinflüssen anzupassen und sich entsprechend zu verändern. Außerdem untersuchen die Wissenschaftler, wie die Organismen ihre Zellstruktur sowie ihre Vermehrung regulieren. Des Weiteren geht es um Untersuchungen der biogeochemischen Prozesse, die für den Austausch klimatisch relevanter Spurengase verantwortlich sind. Diese Analysen umfassen alle Funktionsebenen von der atomaren und strukturellen Ebene, der molekularen und zellulären Ebene, der Biochemie und Physiologie bis hin zu mikrobiellen Gemeinschaften und der Assoziation von Mikroorganismen mit Pflanzen.

Kontakt

Karl-von-Frisch-Str. 10
35043 Marburg
Telefon: +49 6421 178-0
Fax: +49 6421 178-999

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS for Environmental, Cellular and Molecular Microbiology

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren und Forschungsgruppenleitern.

„Wir wollen CO<sub>2</sub> als Kohlenstoffquelle erschließen“

Ein Gespräch mit Tobias Erb über einen künstlichen Stoffwechselweg, der Kohlendioxid bindet, und die Synthetische Biologie

mehr
Mit künstlicher Fotosynthese gegen den Klimawandel

Ein synthetischer, biologischer Stoffwechselweg bindet CO2 effizienter, als Pflanzen das schaffen

mehr
Ausgezeichneter Nachwuchs

Tatjana Tchumatchenko, Tobias Erb und Ludovic Righetti erhalten den Heinz Maier-Leibnitz-Preis 2016

mehr
Kosmetik statt wirkungsvoller Verteidigung

Der Brandpilz Ustilago maydis lässt Maispflanzen Farbstoffe anstelle von Lignin produzieren

mehr
Ein Blick in die biochemische Methan-Produktion

Cryo-Elektronenmikroskopie-Aufnahmen enthüllen die Struktur einer Hydrogenase, mit der Archaebakterien Wasserstoff für die Methanbildung spalten

mehr

Mehr als 50 Millionen Gene, 40 000 Proteine – für Tobias Erb und seine Kollegen vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg war die Auswahl in internationalen Datenbanken gewaltig. Am Ende haben die Wissenschaftler gerade mal 17 Enzyme für den ersten künstlichen Stoffwechselweg herausgepickt, der Kohlendioxid in andere organische Moleküle umwandeln kann. Nun müssen sie zeigen, dass der am Reißbrett entworfene Zyklus auch in einer lebenden Zelle funktioniert.

Methan oxidierende Bakterien spielen eine bedeutsame Rolle für unser Klima. Wie wichtig der Schutz jener Biotope sein könnte, die eine Heimstatt für diese Mikroben sind, machen Forschungsarbeiten im europäischen Projekt METHECO deutlich.

Zum Klimaschutz gehört auch, die Biotope Methan oxidierender Bakterien zu schützen.

Sie sind bisweilen mit bloßem Auge zu erkennen: kleine gelb-orange gefärbte kugelige Strukturen. Bei genauerem Hinsehen entpuppen sie sich als eine Ansammlung unzähliger Bakterien der Gattung Myxococcus.

Momentan sind keine Angebote vorhanden.

Die Schlüsselenzyme der biologischen Methanbildung

2018 Shima, Seigo

Mikrobiologie Ökologie

Methan ist ein Endprodukt des anaeroben Abbaus von organischem Material und ein starkes Treibhausgas. Etwa die Hälfte der weltweiten Methanemissionen wird von methanogenen Archaeen durchgeführt. Wir interessieren uns für die an der hydrogenotrophen Methanogenese beteiligten Enzyme und berichten über die Kristallstrukturen der Formyl-Methanofuran-Dehydrogenase und des Heterodisulfid-Reduktase/Hydrogenase-Komplexes. Diese Enzymkomplexe sind an den sequentiellen Reaktionen der Ferredoxin-Reduktion und CO2-Reduktion/Fixierung im methanogenen Stoffwechselweg beteiligt.

mehr

Synthetische Kohlenstoffdioxid-Fixierung

2017 Erb, Tobias

Genetik Mikrobiologie Ökologie

Die Umwandlung des Treibhausgases Kohlenstoffdioxid (CO2) in organische Verbindungen ist ein Schlüsselprozess im globalen Kohlenstoffkreislauf. In den letzten Jahren wurden mehrere neue Stoffwechselwege und Enzyme zur CO2-Bindung in Mikroorganismen entdeckt. Parallel zu diesen Entdeckungen wurden Ansätze vorangetrieben, mit Hilfe synthetischer Biologie künstliche Stoffwechselwege zur Kohlenstoff-Fixierung zu realisieren, die effizienter als die natürlich existierenden Stoffwechselwege sind. Die synthetische CO2-Fixierung könnte neue Anwendungen in Bio- und Nanotechnologie ermöglichen.

mehr

Architektur bakterieller Gemeinschaften

2016 Drescher, Knut

Entwicklungsbiologie Mikrobiologie Ökologie

Viele bakterielle Spezies besiedeln Oberflächen und bilden dicht gepackte Gemeinschaften, die als Biofilme bezeichnet werden. Solche Biofilme sind resistent gegen Antibiotika und machen einen Großteil der globalen bakteriellen Biomasse aus. Über den Entstehungsprozess von Biofilmen ist bisher nur wenig bekannt. Während des Prozesses, der mit der Oberflächenhaftung einer einzigen Zelle beginnt und nach vielen Zellteilungen zur Bildung von turmförmigen Strukturen führt, ändert sich die Biofilmarchitektur in einigen kritischen Phasen dramatisch, wie kürzlich entdeckt wurde.

mehr

Wie anaerobe Bakterien und Archaeen Energie konservieren

2015 Buckel, Wolfgang

Mikrobiologie

In Clostridien ist die exergone Reduktion von Crotonyl-CoA zu Butyryl-CoA mit NADH an die endergone Reduktion von Ferredoxin mit NADH gekoppelt. Der Prozess, Elektronenbifurkation genannt, wird von Butyryl-CoA-Dehydrogenase (Bcd) und einem Elektronen transferierenden Flavoprotein (Etf), das zwei FAD enthält, katalysiert. Diese und ähnliche Systeme sind in anaeroben Bakterien und Archaeen weit verbreitet. Sie reduzieren Ferredoxin zur Bildung von H2, zur Erzeugung von ΔµNa+ mittels Ferredoxin-NAD Reduktase (Rnf) und zur Reduktion von CO2 in der Aceto- und Methanogenese.

mehr

Wasserstoff ist ein Spurengas in der Atmosphäre, das überwiegend im Boden abgebaut wird. Bereits in den 1970er-Jahren war klar, dass es sich bei dem Abbauprozess um eine biologische Aktivität handeln muss. Es dauerte jedoch weitere 40 Jahre, bis der Abbauprozess aufgeklärt werden konnte. Heute wissen wir, dass für den Abbau des atmosphärischen Wasserstoffs Nickel-Eisen-Hydrogenasen der Gruppe 5 verantwortlich sind, die fast ausschließlich in den in Böden weitverbreiteten Actinobakterien, zum Beispiel Streptomyces oder Mycobacterium, vorkommen.

mehr
Zur Redakteursansicht