Nanosohlen halten Schwergewichte an der Decke

Max-Planck-Forscher entdecken grundlegenden Mechanismus, der es Tieren erlaubt, sich mit winzigen Hafthärchen an den Füßen auch kopfüber zu bewegen

23. September 2003

Biologische Haftungsmechanismen werden von der Nano- bis zur Mikroskala durch ein einfaches Gesetz bestimmt, dem Biologen und Materialforscher am Max-Planck-Institut für Metallforschung auf die Spur gekommen sind. Eduard Arzt, Stanislav Gorb und Ralph Spolenak beschreiben in der neuen Ausgabe der "Proceedings of the National Academy of Sciences" (PNAS, September 16, 2003, vol. 100, no. 19, 10603-10606), wie die Anzahl und Dichte der Härchen an den Fußsohlen von Käfern, Fliegen, Spinnen oder Geckos sich auf ihre Haftung auswirkt, so dass sie an den Wänden empor und an der Decke spazieren können. Die Forscher fanden eine simplen mathematischen Zusammenhang: Je größer das Körpergewicht einer Tiergruppe, desto kleiner und zahlreicher sind die Haftkontakte. Diese Forschungsergebnisse bergen ein großes Anwendungspotential für jede Art von Befestigungen, von wieder verwendbarem selbst haftendem Klebeband bis zu komplexen Kletterrobotern.

Viele Lebewesen, die im Stande sind, ihr eigenes Gewicht zu halten, wenn sie an der Decke hängen, vertrauen auf sehr feine Hafthärchen. Stanislav Gorb, der als Biologe an dem materialwissenschaftlich ausgerichteten Max-Planck-Institut für Metallforschung in Stuttgart arbeitet, hat diese Härchen mit unterschiedlichen Mikroskopie-Techniken bei Käfern, Fliegen, Spinnen und sogar Geckos untersucht. Die Quintessenz seiner Untersuchungen war: Je größer (schwerer) eine Tierart ist, desto feiner sind seine Haftstrukturen. Vom Käfer, dessen Hafthärchen nur ungefähr zehn Mikrometer im Durchmesser messen, also nur einem Zehntel des menschlichen Haares, bis hin zum Gecko, dessen Härchen noch einmal um den Faktor Hundert kleiner sind, findet man in der Natur die ausgeklügeltsten Haftsysteme. Der Gecko ist sogar schon ein Beispiel für Nanotechnologie in der Natur.

Das Elektronenmikroskop enthüllt jene spatelförmige Feinstrukturen, die an den Fußsohlen von Käfern, Fliegen, Spinnen und Geckos für Haftung auch an Decken oder Wänden sorgen. Interessanterweise nimmt die Größe der Strukturen mit wachsenden Körpergewicht ab, während im gleichen Maß die Dichte der Strukturen zunimmt.

Um nun von der Natur lernen zu können, muss man die der Haftung zugrunde liegenden Mechanismen verstehen. Die Teamarbeit zwischen dem Biologen Stanislav Gorb und den Materialforschern Ralph Spolenak und Eduard Arzt als Materialforschern ergab dafür die richtige Kombination: Es stellte sich nämlich heraus, dass sich das Haftungsverhalten der Tiere mit der Klassische Kontaktmechanik, mit der man eigentlich die Haftung von Kugeln auf glatten Oberflächen beschreibt und die auf den so genannten Van-der-Waals Kräften beruht, erklären lässt. Da die Haftkraft des Einzelkontakts mit dem Umfang skaliert, führt die Aufspaltung größerer Einzelkontakte in immer mehr Subkontakte dazu, dass die Effizienz des Kontaktsystems kontinuierlich steigt. Zwar nimmt die Haftkraft des Einzelkontakts ab, wenn man ihn verkleinert, doch dieser Effekt wird durch die wachsende Zahl an Haftkontakten bei weitem kompensiert. Die Haftfähigkeit von Lebewesen kann somit über fünf Größenordnungen im Gewichtsbereich von zehn Mikrogramm bis einhundert Gramm quantitativ beschrieben werden.

Diese Forschungsergebnisse sind von großer technologischer Relevanz: Sie zeigen, wie man durch feine Kontakthärchen kleberfreie Haftung erzielen kann. Hierbei kann der Mensch die Natur am Beispiel des Geckos sogar noch übertreffen, da das natürliche Limit für die dünnsten Haare (Durchmesser: ca. 200 Nanometer) technologisch heute schon unterschritten werden kann. "Wollte hingegen ein Mensch an der Decke laufen", meint Ralph Spolenak, "müssten sein Hände und Füße mit Haftstrukturen bedeckt sein, deren einzelne Härchen maximal 10 bis 20 Nanometer im Durchmesser haben dürften."

Für technische Anwendungen sind der Phantasie im Prinzip keine Grenzen gesetzt: Die Möglichkeiten reichen vom Kletterroboter über Haftbänder zum aufhängen von Bildern bis hin zu Anwendungen in Industrierobotern. Doch im Gegensatz zu konventionellen Klebebändern würden die neuen Haftstrukturen nicht mehr verschmutzen, und im Vergleich zu bisherigen Klettverschlüssen benötigen sie keinen Haftpartner mehr, denn sie haften auf allen Oberflächen von allein.

Zur Redakteursansicht