Millisekundenpulsar im Schleudergang

Die Gammastrahlung eines schnell rotierenden Neutronensterns rüttelt an den Modellen zum Ursprung solcher Objekte

3. November 2011

Astronomen haben den ersten Gammapulsar in einem Kugelsternhaufen aufgespürt. Mit einer Distanz von etwa 27000 Lichtjahren hält er außerdem noch den Entfernungsrekord in dieser Objektklasse. Seine hohe Leuchtkraft deutet zudem darauf hin, dass J1823-3021A der jüngste bisher gefundene Millisekundenpulsar ist und sein Magnetfeld um einiges stärker als theoretisch vorhergesagt. So lässt er auf eine neue Population solch extremer Objekte schließen. Die Entdeckung gelang einem internationalen Team um Paulo Freire vom Bonner Max-Planck-Institut für Radioastronomie. Die Forscher hatten Daten des Weltraumteleskops Fermi ausgewertet.

Wenn der Kernbrennstoff im Innern eines massereichen Sterns aufgebraucht ist, kollabiert dieser und setzt dabei soviel Energie frei, dass er kurzzeitig milliardenfach heller strahlt als zuvor. Eine solche Supernova markiert auch die Geburt eines Neutronensterns, eines extrem kompakten Atomkerns mit einem Durchmesser von rund 20 Kilometern, aber der millionenfachen Erdmasse. Der Neutronenstern dreht sich sehr schnell um seine Achse. Dabei senden beschleunigte, geladene Teilchen entlang der Magnetfeldlinien elektromagnetische Strahlung in verschiedenen Wellenlängenbereichen aus. Diese Strahlung ist in Richtung der Magnetfeldachse gebündelt – wie die Lichtkegel eines Leuchtturms.

Ein solcher Pulsar hat Rotationsperioden zwischen 16 Millisekunden und acht Sekunden. Noch schneller rotieren die sogenannten Millisekundenpulsare, die Rotationsperioden bis zu 1,4 Millisekunden haben – das entspricht 43000 Umdrehungen pro Minute! Offenbar wurde bei ihnen die zunächst niedrigere Rotationsgeschwindigkeit nachträglich durch das Einströmen von Materie eines Begleitsterns erhöht. Tatsächlich finden sich die meisten dieser Millisekundenpulsare in Doppelsternsystemen.

Millisekundenpulsare weisen eine extrem hohe Rotationsstabilität auf – selbst auf langen Zeitskalen; ihre Ganggenauigkeit lässt sich mit den besten Atomuhren auf der Erde vergleichen. Sie stellen eine Art von gewaltigen Schwungrädern im Weltall dar, wobei so gut wie nichts ihre Rotation beeinflussen kann. Anhand dieser Objekte lässt sich die Allgemeine Relativitätstheorie testen; außerdem erlauben sie die Suche nach Gravitationswellen sowie die Analyse von Eigenschaften der extrem verdichteten Pulsarmaterie.

„Wir haben inzwischen mehr als 100 dieser Objekte mit Radioteleskopen entdeckt“, sagt Paulo Freire vom Max-Planck-Institut für Radioastronomie. „Aufgrund der hohen Empfindlichkeit des Fermi-Teleskops waren wir jetzt zum ersten Mal in der Lage, einen Millisekundenpulsar auch durch seine Gammastrahlung aufzuspüren.“ Dabei fanden die Forscher den Pulsar mit der Bezeichnung J1823-3021A inmitten eines Kugelsternhaufens.

Kugelsternhaufen sind sehr alte Ansammlungen von Hunderttausenden von Sternen, die durch ihre Schwerkraft aneinander gebunden sind. Darin findet man eine ganze Reihe von Doppelsternsystemen, die zur Entstehung von Millisekundenpulsaren führen können. Einer dieser Sternhaufen ist NGC 6624 in Richtung des Sternbilds Schütze. Mit einer Entfernung von etwa 27000 Lichtjahren befindet er sich im Zentralbereich unserer Milchstraße. Insgesamt sechs Pulsare konnten die Forscher in diesem Kugelsternhaufen finden, J1823-3021A war der erste.

Mit einer Rotationsperiode von nur 5,44 Millisekunden (11000 Umdrehungen pro Minute) ist er außerdem der leuchtkräftigste Pulsar, der bis jetzt in einem Kugelsternhaufen nachgewiesen wurde. Im Radiobereich war J1823-3021A schon 1994 entdeckt worden. Seitdem sind regelmäßig Zeitreihenmessungen mit großen Radioteleskopen durchgeführt worden, insbesondere mit dem Lovell-Teleskop der Universität Manchester (England) sowie dem Nançay-Teleskop in Frankreich.

„Zu unserer großen Überraschung haben wir herausgefunden, dass der Pulsar auch im Gammalicht extrem hell strahlt“, sagt Damien Parent vom US-amerikanischen Center for Earth Observing and Space Research. „Von diesen Millisekundenpulsaren hatte man nicht erwartet, dass sie so hell sind. Und das lässt auf ein unerwartet starkes Magnetfeld bei einem derart schnell rotierenden Pulsar schließen.“

„Das bedeutet eine Herausforderung für unsere derzeitigen Theorien zur Bildung solcher Pulsare”, erklärt Michael Kramer, Direktor am Bonner Max-Planck-Institut und dort Leiter der Forschungsgruppe Radioastronomische Fundamentalphysik. „Wir untersuchen im Moment eine ganze Reihe von Erklärungsmöglichkeiten. Die Natur könnte sogar Millisekundenpulsare auf eine Art entstehen lassen, die wir zurzeit noch gar nicht auf dem Schirm haben.“

„Wie auch immer diese anomalen Pulsare entstehen mögen, eines scheint dabei festzustehen“, sagt Paulo Freire: „Zumindest in den Kugelsternhaufen sind das derart junge Objekte, dass sie wahrscheinlich genauso häufig entstehen wie die große Anzahl von bereits bekannten normalen Millisekundenpulsaren.“

NJ/HOR

Zur Redakteursansicht