Riesen-Interneuron sorgt für sparsame Kodierung

Eine einzelne Zelle kontrolliert die Aktivität von 50.000 Nervenzellen im Heuschrecken-Gehirn

13. Mai 2011

Das Gehirn ist eine Codiermaschine: Es übersetzt physikalische Reize durch die Sprache seiner Nervenzellen in die Wahrnehmung von Seheindrücken, Gerüchen oder Tönen. Das Problem ist: Seine Kapazität ist begrenzt, besonders an Engstellen wie dem Sehnerv oder in Gedächtnisarealen. Wissenschaftler des Max-Planck-Instituts für Hirnforschung in Frankfurt haben nun im Gehirn von Heuschrecken eine einzelne Nervenzelle entdeckt, die dafür sorgt, dass Geruchsinformationen mittels „sparse coding“ äußerst effizient verarbeitet werden können. Dieses Riesen-Interneuron verfolgt die Aktivität mehrerer zehntausend Nervenzellen im Riechzentrum und sendet hemmende Signale zu ihnen zurück. So ist sicher gestellt, dass die Neurone nur sparsam aktiv werden.

Ein einzelnes Riesen-Interneuron aus dem Pilzkörper eines Heuschrecken-Gehirns (rechts) wird von vielen tausend Kenyon-Zellen aktiviert (+, roter Pfeil). Seine Aktivität hemmt die Kenyon-Zellen (-, blauer Pfeil), so dass nur wenige davon kurzzeitig aktiv sind. Diese negative Rückkopplungsschleife sorgt für eine sparsame Kodierung von Geruchsinformationen

Heuschrecken nehmen Gerüche mit Sinneszellen auf ihren Antennen wahr. Von den Antennen gelangen die Geruchsinformationen in Geruchszentren des Gehirns, die so genannten Antennenlappen und Pilzkörper. Die Nervenzellen in den Antennenlappen sind nicht sehr wählerisch, d. h. jede Zelle spricht auf verschiedene Gerüche an. Die Nervenzellen in den Pilzkörpern sind dagegen sehr spezifischer: Ihre Kenyon-Zellen reagieren jeweils nur auf einen einzigen Duft. Außerdem beschränken sie sich auf meist weniger als drei elektrische Impulse, mit denen sie „ihren“ Geruch anzeigen. Diese als „sparse coding“ genannte Kodierung hat den Vorteil, dass das Gehirn Geruchsinformationen leichter abspeichern und sich daran erinnern kann.

Überraschenderweise ist jede Kenyon-Zelle mit rund der Hälfte aller vorgeschalteten Nervenzellen im Antennenlappen verbunden, die sie aktivieren. Wie schaffen die Kenyon-Zellen es also, konstant mit nur wenigen Signalen zu reagieren, selbst wenn sie unterschiedlich stark aktiviert werden? Gilles Laurent vom Max-Planck-Institut für Hirnforschung und Kollegen aus den USA und Großbritannien zufolge ist dafür eine einzelne Nervenzelle verantwortlich: ein so genanntes hemmendes Riesen-Interneuron. Sie haben entdeckt, dass diese Nervenzelle mit ihrem weit verästelten Dendritenbaum von allen Kenyon-Zellen aktiviert wird. Diese Aktivierung verwandelt sie dann in ein hemmendes Signal, das auf die Kenyon-Zellen zurückwirkt.

„Das Riesen-Interneuron bildet also mit den Kenyon-Zellen eine einfache negative Rückkopplungsschleife. Je stärker es von den Kenyon-Zellen aktiviert wird, desto stärker wirkt es hemmend auf diese zurück und drosselt deren Aktivität“, erklärt Gilles Laurent. Dabei bildet das Interneuron selbst keine Aktionspotenziale, sondern hemmt die Kenyon-Zellen, indem es in unterschiedlichen Mengen den Neurotransmitter Gamma-Aminobuttersäure (GABA) ausschüttet, je nachdem wie stark sie selbst aktiviert wurde. Durch diese abgestufte Aktivierung erreicht die Zelle denselben Effekt, wie er sonst nur durch hunderte oder tausende Interneurone mit Aktionspotenzialen möglich wäre.

Das Riesen-Interneuron kann die Kenyon-Zellen komplett blockieren. Die Forscher haben aber auch herausgefunden, dass das Riesen-Interneuron wiederum von einer weiteren hemmenden Nervenzelle kontrolliert wird. „Auf diese Weise kann die Aktivität des Netzwerks verstärkt oder abgeschwächt und die Empfindlichkeit dieser Rückkopplungsschleife angepasst werden“, sagt Gilles Laurant. Eine wichtige Eigenschaft für Gehirnareale wie die Pilzkörper, die neben der Geruchsverarbeitung auch für Lernen und Gedächtnis im Heuschrecken-Gehirn zuständig sind. Denn in den Pilzkörpern werden Gerüche mit anderen Sinneseindrücken verknüpft. So kann die Heuschrecke beispielsweise den Geruch einer Futterpflanze mit ihrem Geschmack verbinden.

Die Wissenschaftler haben damit aufgeklärt, wie negative Rückkopplungsschleifen in Nervensystemen aufgebaut sein können. Solche Netzwerke gibt es beispielsweise auch im so genannten piriformen Kortex, einem Geruchszentrum in der Großhirnrinde von Wirbeltieren. „Sehr wahrscheinlich existieren ähnliche Mechanismen zur Aktivitätskontrolle auch bei Säugetieren. Diese müssen aber nicht zwangsläufig aus einem einzelnen Interneuron bestehen, sondern könnten eine Gruppe von hemmenden Nervenzellen umfassen, die mit ihren Aktionspotenzialen auf vorgeschaltete Zellen zurückwirken“, vermutet Laurent.

HR

Zur Redakteursansicht