OD und SH - zwei neue Moleküle im All
Der deutsche Great-Empfänger an Bord des Flugzeug-Observatoriums Sofia untersucht die Geburt von Sternen in der Galaxis
Viele der in einer Spezialausgabe von „Astronomy & Astrophysics“ präsentierten 22 Veröffentlichungen internationaler Wissenschaftler befassen sich mit dem Sternentstehungsprozess in seinen allerfrühesten Phasen, in denen der embryonale Stern (Protostern) noch in heftiger Wechselwirkung mit den umgebenden Molekülwolken steht. Dabei zerstört er seine Geburtswolke, heizt das umgebende Material auf und ionisiert es.
Die hohe spektrale Auflösung von Great ermöglicht es, durch die Untersuchung der Emission des ionisierten Kohlenstoffs in einer Reihe von Sternentstehungsgebieten, das Geschwindigkeitsfeld des Gases in der umgebenden Molekülwolke aufzulösen. So gelang dem Instrument an drei Babysternen der direkte Nachweis des Kollapses der protostellaren Hüllen, was unmittelbar Rückschlüsse auf die dynamischen Prozesse bei der Sternengeburt erlaubt.
Weiterhin untersuchten die Forscher mit Great die Hülle eines Sterns in der Spätphase seiner Entwicklung, die durch den heißen Stern im Innern aufgeheizt und ionisiert wird, sowie die heftige Wechselwirkung eines Supernova-Überrests mit dem umgebenden interstellaren Medium. Außerdem nahm Great die Gasscheibe im Zentrum der Milchstraße unter die Lupe, die das massereiche schwarze Loch mit Materie füttert. Und schließlich blickte das Instrument auch in andere Milchstraßen und beobachtete die Sternentstehung im Zentralbereich der nahen Galaxie IC342.
Als wichtige Entdeckung gilt auch der erste Nachweis von zwei neuen Molekülen im Weltraum: OD, eine isotopische Variante von Hydroxyl (OH), bei der das Wasserstoffatom durch sein schwereres Isotop Deuterium ersetzt wurde, sowie das Sulfanyl-Radikal SH. Eine technische Meisterleistung stellen erste spektroskopische Beobachtungen bei einer Frequenz von 2,5 Terahertz (entsprechend einer Wellenlänge von 0,120 Millimeter) dar; damit wird neues astrophysikalisches Territorium erkundet.
„Die hohe Auflösung unseres Spektrometers ist speziell dafür ausgelegt, die Physik und Chemie des interstellaren Gases und den Lebenszyklus der Sterne zu erforschen, von ihrer frühen embryonalen Phase noch innerhalb der Geburtswolke bis zum Tod des entwickelten Sterns, bei dem die Hülle wieder zurück in den umgebenden Raum geschleudert wird“, sagt Great-Projektleiter Rolf Güsten vom Bonner Max-Planck-Institut für Radioastronomie. „Diese phantastischen Ergebnisse sind der Lohn für unsere langjährige Entwicklungsarbeit.“
„Die reiche Ernte von wissenschaftlichen Resultaten bereits aus der allerersten Beobachtungskampagne mit Sofia und unserem Great-Empfänger gibt einen guten Eindruck des gewaltigen wissenschaftlichen Potenzials, das in diesem Flugzeug-Observatorium steckt“, ergänzt der stellvertretender Projektleiter Jürgen Stutzki von der Universität Köln.
Im Gegensatz zum Betrieb von Satelliten erlaubt Sofia, den rasanten Fortschritt insbesondere im Bereich der Terahertz-Beobachtungen unmittelbar zu nutzen. Instrumente wie Great können – fortlaufend an den neuesten technischen Stand angepasst – stets im Grenzbereich des technisch Möglichen fliegen und versprechen so aufregende astronomische Entdeckungen für die kommenden Jahre.
Die erste Serie wissenschaftlicher Flüge wurde im November 2011 erfolgreich abgeschlossen. Die nächste Flugserie ist für den Spätherbst dieses Jahres geplant, dann ist Sofia bereits mit Detektoren ausgestattet, die bei bis zu 4,7 Terahertz (0,063 Millimeter Wellenlänge) arbeiten.
Hintergrund
Sofia
Das Stratospheric Observatory for Infrared Astronomy, ein Gemeinschaftsprojekt der amerikanischen Raumfahrtorganisation Nasa und des Deutschen Zentrums für Luft- und Raumfahrt (DLR), ist ein fliegendes Teleskop von 2,70 Meter Durchmesser, montiert in einer umgebauten Boeing 747SP. Sofia fliegt in Höhen bis zu 13700 Meter und ermöglicht damit den Zugang zu astronomischen Signalen bei ferninfraroten Wellenlängen, die ansonsten vom Wasserdampf in der Erdatmosphäre absorbiert würden. Sofia, weltweit das einzige Flugzeug-Observatorium im Einsatz, öffnet so den Himmel für hochauflösende Spektroskopie im fern-infraroten Spektralbereich mit Great.
GREAT
Der German Receiver for Astronomy at Terahertz Frequencies ist ein Empfänger für spektroskopische Ferninfrarot-Beobachtungen in einem Frequenzbereich von 1,25 bis 5 Terahertz (60 bis 240 Mikrometer Wellenlänge), der von bodengebundenen Observatorien aus wegen der mangelnden atmosphärischen Transparenz nicht mehr zugänglich ist. Dieser Empfänger kommt als Instrument der ersten Generation am Flugzeug-Observatorium Sofia zum Einsatz. Great wurde durch ein Konsortium deutscher Forschungsinstitute (MPIfR Bonn und KOSMA/Universität zu Köln, in Zusammenarbeit mit dem MPI für Sonnensystemforschung und dem DLR-Institut für Planetenforschung) entwickelt und gebaut. Projektleiter ist Rolf Güsten (MPIfR). Die Entwicklung des Instruments ist finanziert mit Mitteln der beteiligten Institute, der Max-Planck-Gesellschaft und der Deutschen Forschungsgemeinschaft.
NJ / HOR