Scharfe Live-Bilder aus dem Mäusehirn

Göttinger Max-Planck-Wissenschaftler haben erstmals feinste Details von Nervenzellen im Gehirn einer lebenden Maus sichtbar gemacht

2. Februar 2012

Feinste Strukturen des Gehirns aufzudecken, um seine Funktionsweise zu enträtseln – diesem Ziel sind Forscher um Stefan Hell vom Max-Planck-Institut für biophysikalische Chemie einen entscheidenden Schritt näher gekommen. Mit der von Hell entwickelten STED-Mikroskopie ist es den Wissenschaftlern erstmals gelungen, scharfe Live-Bilder aus dem Gehirn einer lebenden Maus aufzunehmen. In einer bisher unerreichten Auflösung von unter 70 Nanometern haben sie die winzigen Strukturen sichtbar gemacht, über die Nervenzellen miteinander kommunizieren. Diese Anwendung der STED-Mikroskopie eröffnet Neurobiologen und Medizinern neue Wege, grundlegende Vorgänge im Gehirn zu entschlüsseln.

Unmengen an Informationen werden tagtäglich nicht nur über unsere Datenautobahnen verschickt. Auch unser Gehirn muss eine riesige Datenflut verarbeiten. Dazu steht jede der rund hundert Milliarden Nervenzellen mit tausenden Nachbarzellen in Kontakt. Der gesamte Datenaustausch erfolgt dabei über Kontaktstellen – die Synapsen. Nur wenn Nervenzellen zur richtigen Zeit und am richtigen Ort über solche Kontaktstellen miteinander kommunizieren, kann das Gehirn seine komplexen Aufgaben bewältigen: Wir spielen ein schwieriges Klavierstück, lernen jonglieren oder erinnern uns an Namen von Menschen, die wir jahrelang nicht gesehen haben.

Am meisten lässt sich über diese wichtigen Schaltstellen im Gehirn lernen, wenn man sie direkt bei ihrer Arbeit beobachtet. Wann und wo bilden sich neue Synapsen und warum verschwinden sie an anderer Stelle? Keine leichten Fragen, denn Details in lebenden Nervenzellen können nur mit Lichtmikroskopen beobachtet werden. Feinheiten, die enger beieinander liegen als 200 Nanometer (millionstel Millimeter), erscheinen aufgrund der Lichtbeugung als ein einziger verwaschener Fleck. Die von Stefan Hell und seinem Team am Max-Planck-Institut für biophysikalische Chemie entwickelte STED-Mikroskopie hat diese Grenze erstmals radikal unterlaufen. Dazu verwenden die Forscher einen einfachen Trick: Eng benachbarte Details werden unter Verwendung eines speziellen Lichtstrahls sequenziell dunkel gehalten, sodass sie nicht auf einmal, sondern nacheinander aufleuchten und somit unterschieden werden können. Mit dieser Technik konnten die Wissenschaftler um Hell die Auflösung gegenüber herkömmlichen Lichtmikroskopen bis um etwa das Zehnfache steigern.

Die STED-Mikroskopie hat von der Materialforschung bis hin zur Zellbiologie bereits breite Anwendung gefunden. Zellkulturen und Schnittpräparate boten unter diesem Mikroskop  faszinierende Einblicke in den zellulären Nanokosmos. Erste Echtzeit-Videoclips von einer Nervenzelle zeigten, wie winzige Botenstoffbehälter innerhalb der langen Nervenzell-Endigungen wandern. Als kühne Vision galt noch vor einem Jahr, was den Physikern und Biologen um Hell nun gelungen ist: auch höhere lebende Organismen mit Detailschärfe im Nanometerbereich zu untersuchen. Als erste blickten die Göttinger Forscher mit dem STED-Mikroskop direkt in das Gehirn lebender Mäuse. Ihre Arbeiten zeigen Nervenzellen aus der oberen Hirnschicht der Nager in bisher unerreichter Detailtreue.

„Mit unserem STED-Mikroskop sehen wir selbst die sehr feinen Verästelungen von Nervenzellen im Gehirn einer lebenden Maus scharf, an denen die Synapsen sitzen. Bei der hohen Auflösung von 70 Nanometern können wir diese sogenannten Dornfortsätze mit ihren pilz- oder knopfförmigen Ausstülpungen deutlich erkennen“, erklärt Hell. Es sind die bislang schärfsten Aufnahmen dieser elementaren Kontaktstellen des Gehirnschaltkreises. „Um diese sichtbar zu machen, nehmen wir genetisch veränderte Mäuse, die in ihren Nervenzellen große Mengen eines gelb fluoreszierenden Proteins herstellen. Dieses Protein wandert in alle Verästelungen der Nervenzelle, selbst in kleinste, feinste Strukturen“, erklärt Katrin Willig, Nachwuchsforscherin in der Abteilung NanoBiophotonik von Stefan Hell. Die genetisch veränderten Mäuse stammen aus einer Zucht der Arbeitsgruppe von Frank Kirchhoff am Göttinger Max-Planck-Institut für experimentelle Medizin. Bilder der Nervenzellen im Abstand von sieben bis acht Minuten offenbarten den Wissenschaftlern Überraschendes: Die Dornfortsätze können sich bewegen und ändern ihre Form. „Die superscharfen Live-Aufnahmen könnten in Zukunft sogar zeigen, wie bestimmte Proteine an den Kontaktstellen verteilt sind“, so Hell. Mit solchen immer detaillierteren Bildern von Strukturen im Gehirn will das Team dazu beitragen, den Aufbau und die Funktion der Synapsen auf molekularer Ebene aufzuklären.

Solche Erkenntnisse könnten auch helfen, Krankheiten besser zu verstehen, die auf einer Fehlfunktion von Synapsen beruhen. Zu diesen sogenannten Synaptopathien zählen beispielsweise Autismus oder Epilepsie. „Durch die STED-Technik und ihre Anwendung im lebenden Organismus bekommen wir nun zum ersten Mal einen optischen Zugang zur molekularen Skala solcher Krankheiten“, hofft Hell. Als einer der beiden Sprecher des Göttinger
DFG-Forschungszentrums Molekularphysiologie des Gehirns setzt er bei seiner weiteren Forschung auf Zusammenarbeit. Mit Neurobiologen und Neurologen möchte er mit seinem Team die Fortschritte in der Abbildungstechnik in grundlegende Erkenntnisse über die Arbeitsweise unseres Gehirns umsetzen.

CR/HR

Lichtblicke in der Nanowelt

Wie tief können wir mit optischen Mikroskopen in die Details des Sichtbaren vordringen? Bislang galt das von Ernst Abbe schon 1873 formulierte Gesetz als Untergrenze. Objekte, die enger als 200 Millionstel Millimeter, also etwa das Zweihundertstel einer Haaresbreite, nebeneinander liegen, können im Bild nicht mehr unterschieden werden. Grund dafür ist die Wellennatur des Lichts, dessen halbe Wellenlänge in etwa diesen 200 Nanometern entspricht. Die vom Physiker Stefan Hell erfundene und zur Anwendungsreife entwickelte STED-Mikroskopie ermöglicht Forschern Einblicke in die Nanowelt weit jenseits dieser Grenze.
Zur Redakteursansicht