Das Max-Planck-Institut gibt es nicht – tatsächlich ist die Max-Planck-Gesellschaft Träger einer Vielzahl von Forschungseinrichtungen in Deutschland, aber auch im Ausland. In der Auswahl und Durchführung ihrer Forschungsaufgaben sind die Max-Planck-Institute frei und unabhängig. Sie verfügen daher über einen eigenen, selbst verwalteten Haushalt, der durch Projektmittel von dritter Seite ergänzt werden kann. Die Forschung am Institut muss den wissenschaftlichen Exzellenzkriterien der Max-Planck-Gesellschaft genügen, was durch regelmäßige Evaluation überprüft wird. Die Max-Planck-Institute forschen im Bereich der Lebens-, Natur- und Geisteswissenschaften, vielfach auch interdisziplinär. Ein einzelnes Institut lässt sich daher kaum einem einzigen Forschungsgebiet zuordnen, umgekehrt arbeiten verschiedene Max-Planck-Institute durchaus auch auf demselben Forschungsgebiet.
Im Frühjahr 2020 startete Gruppenleiter Frank Drewnick am Max-Planck-Institut für Chemie eine während der Covid-19-Pandemie spontan initiierte Forschungsreihe. Darin untersuchte er die Eignung von Alltagsmaterialien für Mund-Nasen-Masken, um die Materialauswahl für selbstgemachte Masken zu unterstützen und besser zu verstehen, welche Faktoren ihre Wirksamkeit beeinflussen. Dazu funktionierte die Gruppe Instrumente für die Analyse der Eigenschaften von atmosphärischen Aerosolpartikeln so um, dass sie Filtereffizienz und Druckabfall der Haushaltsmaterialien messen konnte
2020Max-Planck-Institut für Dynamik komplexer technischer SystemeTeng Zhou, Zhen Song, Steffen Linke, Zhiwen Qi, Kai Sundmacher, Max-Planck-Institut für Dynamik komplexer technischer Systeme, Abteilung Prozesstechnik, Otto-von-Guericke Universität Magdeburg, Lehrstuhl Systemverfahrenstechnik, Max-Planck Partnergruppe, East China University of Science and Technology, Shanghai
Mittels modellgestützter Optimierung der Strukturen von Lösungsmitteln und Materialien können chemische Prozesse signifikant verbessert werden. Mit systematischen Screeningmethoden können toxische durch umweltfreundliche Hilfsstoffe ersetzt werden.
Im Frühjahr 2020 wurde die Welt von einem Virus überrascht: SARS-CoV-2 breitete sich zügig aus und stellte jeden einzelnen vor unerwartete Herausforderungen. Wir haben in Göttingen innerhalb von Wochen wegweisende neue Erkenntnisse zur Ausbreitung und Eindämmung von COVID-19 vorgelegt: Wir haben die Ausbreitung analysiert und vorhergesagt, die Aerosolbelastung und Wirksamkeit von Masken quantifiziert und realistische Eindämmungsstrategien entworfen. All diese Erkenntnisse haben wir über Pressearbeit und Stellungnahmen der Öffentlichkeit schnellstmöglich zur Verfügung gestellt.
Der industrielle Einsatz von Wasserstoff gilt als zukunftsweisend. Doch welche materialwissenschaftlichen Herausforderungen ergeben sich bei der Produktion, Speicherung und Nutzung? Am MPIE untersuchen wir in einem interdisziplinären Team mit verschiedenen Methoden, wie sich Wasserstoff durch effektivere Elektrolyse produzieren lässt, wie sich Wasserstoffatome im Material aufspüren lassen und wie verhindert wird, dass Materialien durch Wasserstoff verspröden. Zudem arbeiten wir daran, Eisenerze durch Wasserstoff statt Kohlenstoff zu reduzieren und so CO2-Emissionen zu vermeiden.
Die trockene Methanreformierung (DMR) bietet eine Möglichkeit, schädliche Treibhausgase in industriell nutzbares Synthesegas umzuwandeln. Deshalb wächst das Interesse an Katalysatoren auf Nickel-Basis für die DMR stetig. Mit mikroskopischen Untersuchungen konnten wir zeigen, wie sich ein bimetallischer NiCo-Katalysator während der Aktivierung und anschließender DMR-Reaktion verändert. Dabei erfolgt die Umwandlung von einer Legierung zu einer Segregation von Cobalt und Nickel. Die Zugabe von Cobalt erhöht die Stabilität, hemmt die Verkokung und moduliert die elektronische Struktur des Nickels.