Thrombopoietin: Wachstumsfaktor für Blutzellen treibt Gehirnzellen in den Tod

Göttinger Max-Planck-Wissenschaftler entdecken im Gehirn ein unerwartetes Wechselspiel von Faktoren der Blutbildung

7. März 2005

Zwischen dem Zentralnervensystem und dem blutbildenden (hämatopoietischen) System gibt es eine Reihe interessanter Gemeinsamkeiten. Der Wachstumsfaktor der roten Blutkörperchen, Erythropoietin (EPO), wird beispielsweise im Nervensystem selbst gebildet und dort spezifisch gebunden. EPO besitzt im Gehirn nervenzell-schützende Eigenschaften. Wichtige Funktionen im Gehirn konnten jüngst auch für Thrombopoietin (TPO) nachgewiesen werden. Das Team um Hannelore Ehrenreich vom Max-Planck-Institut für experimentelle Medizin in Göttingen fand heraus, dass dieser mächtigste Stimulator der Blutplättchenbildung auch im Gehirn exprimiert wird und dort eine neue, völlig unerwartete Rolle zu spielen scheint: TPO fungiert als Gegenspieler zu Erythropoietin und verursacht den Zelltod von noch unreifen "Nervenzellen ohne Anschluss". Auf diese Weise wäre TPO mitverantwortlich für die Eliminierung überflüssiger, nicht am Zielort angelangter Nervenzellen (PNAS, 18. Januar 2005).

Im blutbildenden System agieren EPO und TPO als Gegenspieler. Beide Wachstumsfaktoren weisen hohe Sequenzhomologien auf und binden an ähnliche Rezeptoren der Zytokin-Typ-1-Familie. Von Erythropoietin weiß man seit einiger Zeit, dass dieser von der Niere gebildete Faktor im Gehirn potente neuroprotektive (zellschützende) Eigenschaften besitzt: EPO scheint ein wichtiger Überlebensfaktor für Neuronen in Stresszeiten zu sein. Dieses neuroprotektive Potenzial konnte im Tierversuch beispielsweise bei Hirntrauma und Ischämie (Blutleere) festgestellt werden, wurde aber auch in klinischen Versuchen an Schlaganfallpatienten bestätigt. Über die Anwesenheit von Thrombopoietin im Gehirn gab es bisher widersprüchliche Meinungen.

Nun konnten die Wissenschaftler aus Göttingen zeigen, dass das Thrombopoietin ebenfalls im Gehirn exprimiert wird und dort als Gegenstück zu EPO wirkt. Interessanterweise wird TPO insbesondere im postnatalen Hirn gebildet, wohingegen EPO vor allem im embryonalen Gehirn stark exprimiert und postnatal in seiner Expression vermindert wird. Unter Hypoxie (Sauerstoffmangel im Gewebe) hingegen werden EPO und sein Rezeptor im Gehirn rasch hochreguliert, TPO und sein Rezeptor dagegen gedrosselt. Unerwarteterweise fanden die Autoren, dass TPO sich im Gehirn als potenter pro-apoptotischer Faktor zeigt, das heißt es fördert den Zelltod. Bereits in kleinsten Konzentrationen bewirkt TPO den Tod neu generierter Nervenzellen über den so genannten Ras-ERK1/2-Signaltransduktionsweg. Dieser Effekt von TPO wird komplett aufgehoben durch EPO, aber auch durch Neurotrophine, weitere Signalstoffe im Nervensystem.

Die Forscher vermuten, dass die pro-apoptotische Wirkung von TPO dazu dient, Neuronen zu selektieren, die bereits Anschluss an ihre Zielzellen und damit neurotrophe Überlebenshilfe gefunden haben. Die übrig bleibenden, noch unreifen "Zellen ohne Anschluss" würden getötet. Auf diese Weise wäre TPO mitverantwortlich für die Eliminierung überflüssiger (nicht am Zielort angelangter) Nervenzellen. Das provoziert die Frage: Gibt es Situationen, in denen es interessant sein könnte, das TPO-System zu substituieren und damit überflüssige Zellen zu eliminieren?

Die Göttinger zeigen allerdings, dass TPO-Injektionen im Zustand der Blutleere (Hypoxie/Ischämie), also eines exogen induzierten vermehrten Zelltods, wo das TPO-System normalerweise heruntergefahren wird, zu schwerer Schadensvermehrung im Gehirn führen.

Zur Redakteursansicht