Max Planck Institute for Solid State Research

Max Planck Institute for Solid State Research

Lithium batteries that provide electric cars with power, superconductors that conduct electricity over long distances without loss, solar cells that harvest solar power – all of these examples are based on the electrical conductivity characteristics of solid materials. These are some of the phenomena which scientists investigate at the Max Planck Institute for Solid State Research. Solid state materials include metals, ceramics and even crystals of organic molecules. Just how the structures of these materials affect their electrical, mechanical and magnetic properties, is what solid state researchers seek to understand. To this end, the researchers particularly focus on solids at the nanoscale, which behave differently compared to materials in larger dimensions. In order to miniaturize electronic circuits even further or to prepare for the electronics that will follow on from the silicon era, the behaviour of these solids needs to be controlled.

Contact

Heisenbergstraße 1
70569 Stuttgart
Phone: +49 711 689-0
Fax: +49 711 689-1010

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS for Condensed Matter Science

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Electronic Structure Theory

more

Department Solid State Spectroscopy

more

Department Nanoscale Science

more

Department Physical Chemistry of Solids

more

Department Solid State Quantum Electronics

more

Department Quantum Many-Body Theory

more

Department Electronic Structure Theory

more

Department Inorganic Solid State Chemistry

more

Department Low Dimensional Electron Systems

more

The Max Planck Society and the Alexander von Humboldt Foundation recognize the achievements of Pablo Jarillo-Herrero, Anastassia Alexandrova, and Sumit Gulwani

more

A new technique makes it possible to image the spatial structure of polysaccharides using a scanning tunnelling microscope

more

A salt formed due to corrosion on a restored artwork features a structure that is known from the world of biology

more

Processes taking place inside tiny electronic components or in molecules can now be filmed at a resolution of a few hundred attoseconds and down to the individual atom

more

An electron involved in quantum tunnelling generates two photons much more frequently than theoretically predicted

more

The sun sends more energy to Earth than humanity needs. Researchers led by Bettina Lotsch, Director at the Max Planck Institute for Solid State Research in Stuttgart, are working on materials that can help us put this abundant supply to use for a whole host of purposes – even beyond the energy revolution.

For a long time, pianists have had to live without the sensation of playing on ivory keys. One remedy for this is synthetic ivory, a substitute developed by Dieter Fischer, Sarah Parks, and Jochen Mannhart, who usually spend their time researching quantum electronic phenomena at the Max Planck Institute for Solid State Research in Stuttgart. Now, a start-up is planning to produce the material on a large scale – and not only for use in piano keys.

Brilliant-cut diamonds can emit a dazzling array of light, but that is not what attracts Joerg Wrachtrup to these precious stones. The Professor of Physics at the University of Stuttgart and Fellow at Stuttgart’s Max Planck Institute for Solid State Research works with less conspicuous diamonds. His team uses these to develop sensors that are intended to allow live observation of the molecular machinery in a living cell. These insights into the nanoworld could also be of benefit in medicine.

Quantum World in a Cube

1/2014 Material & Technology

Nanoelectronics is at once a promise and a challenge. Within their tiny dimensions, electrons, the drivers of electronic circuits, exhibit some exotic quantum effects. Using ultrasensitive techniques, researchers in Klaus Kern’s department at the Max Planck Institute for Solid State Research in Stuttgart are studying the behavior of electrons in nanostructures.

Printable, flexible and low-cost – these are the properties that engineers hope to achieve with organic electronics. Researchers at the Max Planck Institute for Solid State Research and the Max Planck Institute for Polymer Research are investigating various materials that can be used to manufacture monitors that can be rolled up, or low-cost chips for mass-produced articles.

PhD positions at Max Planck Graduate Center for Quantum Materials

Max Planck Institute for Solid State Research, Stuttgart September 15, 2021

Novel functions from the edge of the quantum world

2020 Boschker, Hans; Braak, Daniel; Bredol, Philipp; Mannhart, Jochen

Chemistry Material Sciences Quantum Physics Solid State Research

The transition regime between the quantum world and our daily reality based on classical physics offers the possibility to realize phenomena and devices with unheard-of properties and functions. Non-unitary quantum electronics uses this transition regime by combining the evolution of quantum states as described by Schrödinger’s equation with quantum jumps, quantum collapse processes, or the decoherence of quantum waves. Electronic or photonic devices using this combination may work outside the generally accepted fundamental laws of physics.

more

Higgs spectroscopy in high-temperature superconductors

2020 Kaiser, Stefan

Chemistry Material Sciences Quantum Physics Solid State Research

With Higgs spectroscopy, we have developed a new method for the investigation of quantum materials, especially high-temperature superconductors. For this purpose, we excite Higgs modes as collective oscillations of the superconducting condensate using Terahertz lasers. This allows direct experimental access to the dynamics of the superconductor and its couplings to external modes. In addition to new insights into high temperature superconductivity and the possibility of its optical control, Higgs spectroscopy as a new method can also be applied to condensates in other quantum materials.

more

Magnetic excitations in microcrystals

2019 Keimer, Bernhard

Chemistry Material Sciences Quantum Physics Solid State Research

A novel x-ray spectrometer allows accurate investigations of collective excitations in quantum materials, even if these can only be synthesized in microcrystalline form. The first experiments with this instrument, developed at MPI for Solid State Research, provide a microscopic explanation for the exceptionally high magnetic ordering temperature of a ruthenium compound whose origin had previously been mysterious. These results open up many new perspectives for the exploration of microscopic interactions and collective quantum phenomena in solids.

more

Tailored quantum materials

2019 Benckiser, Eva

Chemistry Material Sciences Quantum Physics Solid State Research

At interfaces between complex transition metal oxides with different structural, electronic, and magnetic properties, new phases can form that are not present in the phase diagrams of the individual components. In a heterostructure with ultrathin multilayers, these interface properties dominate and thus enable the targeted realization of new, technologically usable materials. Our group investigates model systems using x-ray spectroscopy with the aim of deriving general principles for modifications at interfaces.

more

The kinetics of compositional changes

2018 Merkle, Rotraut; Maier, Joachim

Chemistry Material Sciences Particle Physics Plasma Physics Quantum Physics Solid State Research

Within certain bounds, solids can change their chemical composition. As in such typically narrow ranges the ionic and electronic carriers can vary by orders of magnitude, this process is not only of fundamental interest but also highly relevant for applications such as sensors, fuel cells, and batteries. The understanding of the kinetics of such compositional changes is indispensable for a targeted materials functionalization.

more
Go to Editor View