Max Planck Institute for Physics

Max Planck Institute for Physics

What gives matter its mass? This is one of the questions being investigated by scientists at the Max Planck Institute for Physics in Munich. They study the smallest building blocks of matter and how they interact with each other. The behaviour of these building blocks – the quarks, charged leptons and neutrinos – helps them to understand the origin of the universe and its present form. The Institute researchers conduct experiments at the largest particle physics laboratories around the world. These include CERN in Geneva, KEK in Tsukuba (Japan) and DESY in Hamburg. Moreover, they also perform experiments to investigate cosmic radiation on the Canary Island of La Palma and the neutrino experiment in the Gran Sasso underground laboratory in Italy. Theoreticians not only team up with the experimenters to jointly interpret the results of the experiments, but also to develop new theories in order to better characterise our universe.

Contact

Boltzmannstraße 8
85748 Garching
Phone: +49 89 32354-0
Fax: +49 89 3226-704

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS on Elementary Particle Physics

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Theoretical Physics

more

Department Theoretical Physics

more

Department High-energy accelerator experiments

more

Department Theoretical Physics

more
This year's ERC Synergy Grantees of the Max Planck Society

The scientists and their research teams receive around 40 million euros in funding for their work

more
Installation of the complete version of the Pixel Vertex Detector in the Belle II experiment

Ultra-sensitive detector to investigate the imbalance between matter and antimatter in the universe

more
CRESST detector module with H-shaped temperature sensor made of superconducting material (Photo: A. Eckert/MPP)

Highly sensitive Cresst experiment tunes up to measure dark matter

more
Four different supernova simulations: Top left shows the reference model without neutrino flavor changes, the other three images show simulations with flavor changes after 100 milliseconds in different regions of the proto-neutron star, respectively.

Research team investigates importance of neutrino flavor changes in supernova simulations

more
The infographic presents the chaos of all the different elementary particles inside a proton: quarks and gluons together

A familiar particle - newly explored

more
Show more

Lea Heckmann from the Max Planck Institute for Physics is spending two months working on the MAGIC telescopes on La Palma in the Canary Islands. She talks about unforgettable sunsets and explains what La Palma has in common with Ireland.

The detection of the Higgs boson represented a huge success for the particle accelerator known as the Large Hadron Collider. But other expected or unexpected discoveries, which physicists hoped would explain the appearance of the world we live in, have failed to materialize. Now, Hermann Nicolai, Director at the Max Planck Institute for Gravitational Physics in Potsdam, and Siegfried Bethke, Director at the Max Planck Institute for Physics in Munich, are on a quest for new prospects in particle physics.

When, on a clear night, you gaze at twinkling stars, glimmering planets or the cloudy band of the Milky Way, you are actually seeing only half the story – or, to be more precise, a tiny fraction of it. With the telescopes available to us, using all of the possible ranges of the electromagnetic spectrum, we can observe only a mere one percent of the universe. The rest remains hidden, spread between dark energy and dark matter.

Gravitational waves are some of the most spectacular predictions of the 1915 general theory of relativity. However, it wasn’t until half a century later that physicist Joseph Weber attempted to track them down. In the early 1970s, Max Planck scientists also began working in this research field, and developed second-generation detectors. The groundwork laid by these pioneers meant the waves in space-time ceased to be just figments of the imagination: in September 2015 they were finally detected.

Science without computers? Unthinkable, nowadays! Yet over half a century ago, that was commonplace. Then, in the early 1950s, mathematician and physicist Heinz Billing entered the scene - and introduced the Max Planck Society to electronic computing. It all started with the "Göttingen 1."

Postdoctoral Position (m/f/d) within the ATLAS Inner Detector Group

Max Planck Institute for Physics, Garching May 15, 2024

Particle acceleration: Electrons on the surfing wave 

2023 Caldwell, Allen

Particle Physics

A new era is emerging for collision experiments in particle physics. Researchers are currently developing a new technology that could one day replace large accelerator facilities such as the Large Hadron Collider (LHC): Plasma acceleration, in which particles ride a wave to "fuel" energy for the collision.

more

String theory 2.0

2022 Gnecchi, Alessandra; Lüst, Dieter

Particle Physics Quantum Physics

String theory unifies two incompatible concepts: Quantum physics describes the behavior of elementary particles and their exchange forces – neatly sorted on the shelves of the Standard Model of particle physics. The theory of gravity explains spacetime in the universe with its immeasurable distances. The problem: It cannot be described quantum-physically and integrated into the standard model of particle physics. 

more

Can it be a little lighter? The neutrino on the scale

2021 Susanne Mertens

Particle Physics

The neutrino: Hardly any other particle provides physics with more exciting questions. Why is it so much lighter than its siblings in the particle zoo - and what exactly is its mass? Is it identical to its own antiparticle? Are there other neutrino species besides the known three? Accordingly, many experiments are trying to decipher the nature of this particle. My group is involved in the KATRIN experiment at the Karlsruhe Institute of Technology (KIT). There, about 150 researchers are trying to find out the mass of the neutrino.   

more

Looking for new Physics

2020 Marius Wiesemann, Giulia Zanderighi

Particle Physics

The Standard Model of particle physics describes the elementary particles and their interactions. Since the discovery of the Higgs boson it has been considered complete. However, some characteristics of Higgs boson itself raise new questions. This also goes for many other phenomena we are unable to explain by the means of the Standard Model. Collider experiments as the Large Hadron Collider (LHC) are expected to deliver answers. For these projects to succeed, physicists need to rely on precisely calculated predictions.

more

Cosmic gamma-rays: Fascinating observations with Cherenkov telescopes

2019 Hütten; Moritz; Will, Martin

Astronomy Astrophysics Particle Physics

Using the ground-based Cherenkov telescopes, the sky can be scanned for high-energy gamma radiation. In January 2019, the two MAGIC telescopes on the Canary island of La Palma targeted a gamma-ray burst and measured the highest-energy radiation from such an object to date. It was thus possible to gain new insights into the processes in gamma-ray bursts. Scientists hope to find many more celestial bodies in the highest energy range. For this purpose, the Cherenkov Telescope Array (CTA) – with over one hundred individual telescopes – is currently being built on La Palma and in Chile.

more
Go to Editor View