Max Planck Institute for Physics

Max Planck Institute for Physics

What gives matter its mass? This is one of the questions being investigated by scientists at the Max Planck Institute for Physics in Munich. They study the smallest building blocks of matter and how they interact with each other. The behaviour of these building blocks – the quarks, charged leptons and neutrinos – helps them to understand the origin of the universe and its present form. The Institute researchers conduct experiments at the largest particle physics laboratories around the world. These include CERN in Geneva, KEK in Tsukuba (Japan) and DESY in Hamburg. Moreover, they also perform experiments to investigate cosmic radiation on the Canary Island of La Palma and the neutrino experiment in the Gran Sasso underground laboratory in Italy. Theoreticians not only team up with the experimenters to jointly interpret the results of the experiments, but also to develop new theories in order to better characterise our universe.

Contact

Föhringer Ring 6
80805 München
Phone: +49 89 32354-0
Fax: +49 89 3226-704

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS on Elementary Particle Physics

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Theoretical Physics

more

Department Theoretical Physics

more

Department High-energy accelerator experiments

more

Department Theoretical Physics

more
The infographic presents the chaos of all the different elementary particles inside a proton: quarks and gluons together

A familiar particle - newly explored

more
Aliens could use artificially created black holes as quantum computers.

Hawking radiation could put humanity on the trail of extraterrestrial life

more
Two open mirrors, composed of multiple segments, are pointed towards the sky. In the background, the glowing arcs of the Milky Way are shown.

Dark matter particles could leave traces in gamma spectrum

more
The evolution of a proton bunch in plasma can now be precisely controlled. A phase shift can be seen between the upper and lower images, which depends on when the seed electron bunch is fed into the plasma.

Various factors determine, how much energy a surfing particle can gain

more
Against a black background, yellow and blue cones, with their tips touching and pointing in different directions, can be seen in the upper right quarter of the image and in the lower left corner. In addition, yellow rectangles, some of which are grouped into larger structures, and isolated green lines pointing away from the points of contact of the cones, are distributed especially over the upper right third of the image in an indistinguishable pattern.

Detailed insights into the nature of the Higgs boson could help answer big open questions in physics

more
Show more

Lea Heckmann from the Max Planck Institute for Physics is spending two months working on the MAGIC telescopes on La Palma in the Canary Islands. She talks about unforgettable sunsets and explains what La Palma has in common with Ireland.

The detection of the Higgs boson represented a huge success for the particle accelerator known as the Large Hadron Collider. But other expected or unexpected discoveries, which physicists hoped would explain the appearance of the world we live in, have failed to materialize. Now, Hermann Nicolai, Director at the Max Planck Institute for Gravitational Physics in Potsdam, and Siegfried Bethke, Director at the Max Planck Institute for Physics in Munich, are on a quest for new prospects in particle physics.

When, on a clear night, you gaze at twinkling stars, glimmering planets or the cloudy band of the Milky Way, you are actually seeing only half the story – or, to be more precise, a tiny fraction of it. With the telescopes available to us, using all of the possible ranges of the electromagnetic spectrum, we can observe only a mere one percent of the universe. The rest remains hidden, spread between dark energy and dark matter.

Gravitational waves are some of the most spectacular predictions of the 1915 general theory of relativity. However, it wasn’t until half a century later that physicist Joseph Weber attempted to track them down. In the early 1970s, Max Planck scientists also began working in this research field, and developed second-generation detectors. The groundwork laid by these pioneers meant the waves in space-time ceased to be just figments of the imagination: in September 2015 they were finally detected.

Science without computers? Unthinkable, nowadays! Yet over half a century ago, that was commonplace. Then, in the early 1950s, mathematician and physicist Heinz Billing entered the scene - and introduced the Max Planck Society to electronic computing. It all started with the "Göttingen 1."

Can it be a little lighter? The neutrino on the scale

2021 Susanne Mertens

Particle Physics

The neutrino: Hardly any other particle provides physics with more exciting questions. Why is it so much lighter than its siblings in the particle zoo - and what exactly is its mass? Is it identical to its own antiparticle? Are there other neutrino species besides the known three? Accordingly, many experiments are trying to decipher the nature of this particle. My group is involved in the KATRIN experiment at the Karlsruhe Institute of Technology (KIT). There, about 150 researchers are trying to find out the mass of the neutrino.   

more

Looking for new Physics

2020 Marius Wiesemann, Giulia Zanderighi

Particle Physics

The Standard Model of particle physics describes the elementary particles and their interactions. Since the discovery of the Higgs boson it has been considered complete. However, some characteristics of Higgs boson itself raise new questions. This also goes for many other phenomena we are unable to explain by the means of the Standard Model. Collider experiments as the Large Hadron Collider (LHC) are expected to deliver answers. For these projects to succeed, physicists need to rely on precisely calculated predictions.

more

Cosmic gamma-rays: Fascinating observations with Cherenkov telescopes

2019 Hütten; Moritz; Will, Martin

Astronomy Astrophysics Particle Physics

Using the ground-based Cherenkov telescopes, the sky can be scanned for high-energy gamma radiation. In January 2019, the two MAGIC telescopes on the Canary island of La Palma targeted a gamma-ray burst and measured the highest-energy radiation from such an object to date. It was thus possible to gain new insights into the processes in gamma-ray bursts. Scientists hope to find many more celestial bodies in the highest energy range. For this purpose, the Cherenkov Telescope Array (CTA) – with over one hundred individual telescopes – is currently being built on La Palma and in Chile.

more

Without "Ghosts": a new theory of gravity

2018 Schmidt-May, Angnis

Astronomy Astrophysics Particle Physics Plasma Physics Quantum Physics

So far gravity is hard to integrate in established theories in particle physics. This is why phyisicists try to find new ways to bring this fundamental force into accordance with other models.

more

Neutrinos: Tracking down the origin of matter in the universe

2017 Majorovits, Béla

Astronomy Astrophysics Particle Physics Plasma Physics Quantum Physics

Are neutrinos responsible for the matter-antimatter asymmetry in the universe? Are neutrinos identical to their own antiparticles? The GERDA experiment for the search of the neutrinoless double beta decay was built to find answers to these questions.

more
Go to Editor View