Max Planck Institute of Molecular Physiology

Max Planck Institute of Molecular Physiology

In line with its scientific mission, "from molecule to man", the Max Planck Institute of Molecular Physiology conducts basic biomedical research in Dortmund. At the interface between structural biology, molecular cell biology and chemical biology, the Institute’s scientists pursue an interdisciplinary research approach leading to a unique liaison between chemistry and biology. The scientific concept aims to achieve a holistic understanding of the dynamics of cellular reaction networks. By identifying and synthesising near-natural active substances, the scientists can accurately modulate intracellular processes. State of the art imaging methods are used to depict molecular reactions in cells. An important aspect of the scientists' systems-biological research work is the act of clarifying the molecular causes of diseases which, as in the case of cancer, are based on faulty intracellular signal transmission.


Otto-Hahn-Str. 11
44227 Dortmund
Phone: +49 231 133-0
Fax: +49 231 133-2699

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS for Living Matter

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Resarchers have found new possibilities for targeting cancer genes’ RNA with nature-inspired compounds


Max Planck researchers from Dortmund reveal the tiniest details of actin filaments


Cryo-EM and protein NMR 3D snapshots reveal sophisticated mechanism of action of a bacterial Tc toxin


Structure of key protein for cell division puzzles researchers


Max Planck researchers in Dortmund uncover what constitutes the "crown” of the kinetochore

Show more

Nothing works with incomprehensible code – not even a cell. Patrick Cramer is carrying out research on the enzyme that transcribes the DNA code to enable a protein to be synthesized from a gene. To do so, he relies on high-resolution microscopes and artificial intelligence.

Bacteria, plants and animals are full of unknown substances that could be beneficial for humans. At the Max Planck Institute of Molecular Physiology in Dortmund, Herbert Waldmann tests natural products for their biological efficacy and tries to mimic their effects with simpler molecules.

In movies, 3-D effects are spectacular. And also at the Max Planck Institute of Molecular Physiology in Dortmund, Stefan Raunser finds that three-dimensional images offer a visual feast. His electron microscopes enable him to determine the position of individual atoms with great precision and to study the spatial structure of proteins. In doing so, he occasionally encounters some bizarre constructions.

Lost in Transcription

MPR 4 /2010 Biology & Medicine

How does HIV get a host cell to produce viruses? Researchers are looking for the key in order to develop efficient therapies.

Postdoctoral position (m/f/d) | Physicst / Microscopy Development

Max Planck Institute of Molecular Physiology, Dortmund May 26, 2023

Postdoctoral position (m/f/d) | Chemical Biology

Max Planck Institute of Molecular Physiology, Dortmund May 26, 2023

Anti-aging for the cytoskeleton with therapeutic potential

2021 Pospich, Sabrina.; Raunser, Stefan

Cell Biology Physiology Structural Biology

Whether antibiotics, cholesterol-lowering agents or fluorescent proteins: natural substances, for example from fungi and marine organisms, have always been used in medicine and science. Applying high-resolution cryo-electron microscopy, we have now been able to elucidate for the first time how two natural toxins influence the structure of actin filaments and thus the regulation of the cytoskeleton. While these toxins are already of great use for research, one day they could be used to specifically agglutinate the cytoskeleton of cancer cells and thus kill them. 


Starving cancer cells

2020 Ziegler, Slava; Waldmann, Herbert

Cell Biology Physiology

Tumours grow much faster than healthy tissue. Cancer cells get the energy and building blocks they need by a ten times higher sugar uptake compared to normal body cells. One could say that cancer cells are addicted to sugar. We exploit this natural weakness and put cancer cells on a radical sugar diet by applying a series of self-developed active substances so that they starve and die.


Electroporation revisited: from a test tube to the living cell

2019 Alex, Amal; Maffini, Stefano; Musacchio, Andrea

Cell Biology Physiology Structural Biology

Cell division requires the coordinated activities of multiple cellular components, such as the kinetochore. This large protein assembly connects chromosomes to the mitotic spindle apparatus and thereby enables their movement. Understanding cell division requires a multidisciplinary approach in which the function of kinetochore components is studied either individually, in a test tube, or inside the living cells. To overtake the challenges of integrating these two approaches, we developed a method to study cell division, or other cellular processes, by directly delivering proteins into cells.


How cells perceive their environment

2018 Bastiaens, Philippe; Krämer, Astrid

Cell Biology Physiology Structural Biology

Do cells have ‚sensory organs’ that enable them to perceive their cellular environment? Using experimental and theoretical approaches, the Department of Systemic Cell Biology investigates how cells perceive their complex environment and adapt to its changes. Our research reveals the dynamic characteristics of the protein networks involved and allows us to identify the principles that govern the setup of these perceiver networks.


Tracking hereditary processes with neo-functionalized proteins

2017 Neumann, Heinz

Cell Biology Chemistry Physiology Structural Biology

How the hereditary material in the cell nucleus is organized determines its flexibility in structure and composition that underlies the genetic processes. Researchers at the MPI of molecular Physiology developed methods using genetically encoded cross-linker amino acids to study chromatin changes in living cells. They have discovered an interaction between nucleosomes which contributes to the condensation of chromosomes during mitosis. In future studies, these methods will help to analyze hereditary processes during the cell cycle.

Go to Editor View