Max Planck Institute for Plant Breeding Research

Max Planck Institute for Plant Breeding Research

The Max Planck Institute for Plant Breeding Research carries out basic molecular biological research on plants. The goal of the Cologne-based scientists is to improve conventional breeding methods and to develop environmentally-friendly plant protection strategies for crops. They focus mainly on the evolution of plants, their genetic blueprint, their development and their interactions with the environment. How does a plant's immune system react to pests, for example? How does the time of flowering depend on the seasonally changing length of the day? How does the genetic variability of crops affect how they adapt to specific environmental influences? The botanists, geneticists and plant physiologists work both in the laboratory and in greenhouses, searching for the molecular basis of natural diversity, and thus make innovative contributions to plant breeding.

Contact

Carl-von-Linné-Weg 10
50829 Köln
Phone: +49 221 5062-0
Fax: +49 221 5062-674

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS on Understanding Complex Plant Traits using Computational and Evolutionary Approaches

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Plant Developmental Biology

more

Department Plant Microbe Interactions

more

Department Comparative Development and Genetics

more
A stiff polymer called lignin (stained red) is deposited in a precise pattern in the cell walls of exploding seed pods. Researchers identified three laccase enzymes required to form this lignin. No lignin forms in the cell wall (stained blue) when all three genes are knocked out by CRISPR/Cas9 gene editing.

Researchers identify the genes controlling the mechanical structure of exploding seed pods

more

The plant hormone cytokinin inhibits root cell growth

more
barley floret displaying open anthers surrounded by released pollen grains.

Scientists show a direct link of auxin to pollen fertility, presenting an important tool to improve plant breeding and a major step towards sustainable agriculture

more

Wild populations of the model plant Arabidopsis thaliana from the Cape Verde Islands reveal the mechanisms of adaptation after abrupt environmental change
 

more

The complete sequencing of the genetic material facilitates the breeding of new varieties

more
Show more

Lanceolate, ovate, elliptical, entire, serrated, and uni- or multi-pinnate – there are numerous names to describe the variety of leaf morphology. But how does this diversity come about? Miltos Tsiantis from the Max Planck Institute for Plant Breeding Research in Cologne and his team are looking for genes that control leaf growth. They have already found one central regulatory element.

Genes against Drought

MPR 3 /2010 Environment & Climate

In many regions of the world, agriculture is threatened by a lack of water. New plant varieties must thus be developed that are especially resistant to drought.

The infestation of crop plants by pathogens can have devastating consequences for world nutrition. Christiane Gebhardt and her collaborators at the Max Planck Institute for Plant Breeding Research are searching for genes in the potato genome that will make it easier to breed potatoes with disease resistance and other quality traits.

BTA Technician / Lab Manager (m/f/d)

Max Planck Institute for Plant Breeding Research, Cologne July 01, 2022

Postdoctoral Researcher (m/f/d) | Protein Mass Spectrometry

Max Planck Institute for Plant Breeding Research, Cologne May 13, 2022

Modeling plant development and diversity 

2021 Hay, Angela; Tsiantis, Miltos 

Plant Research

In the current era of big data, why do we still lack a complete molecular and physical understanding of how cells form tissues and develop into organisms? A simple answer is complexity across scales. Morphology is determined by a cascade of processes that take place at different scales of biological organization, and yield the final form through complex feedback loops of gene action, tissue growth and mechanics. Computational techniques are valuable to organize such data into mechanistic explanations. We describe two predictive, multi-scale studies of plant development and diversity.

more

Clonal reproduction through seeds: from model system to crops

2020 Underwood, Charles; Mercier, Raphaël

Plant Research

Hybrid crops are favored in agriculture due to their increased vigor and yield. However, the offspring of hybrid plants is genetically variable due to sexual reproduction. Therefore, new hybrid seeds need to be generated by plant breeders year after year - a time consuming and costly process that is not amenable for all crops. Recent research has demonstrated that sexual reproduction can be avoided to produce clonal seeds maintaining the hybrid state. Here, we summarize novel approaches developed in hybrid Arabidopsis and rice promising a revolution in hybrid breeding and seed production.

more

Plants rely on their microbiome to protect themselves from pathogens

2019 Thiergart, Thorsten; Getzke, Felix; Hacquard, Stéphane

Plant Research

Fungi and other filamentous microbial eukaryotes, i.e. oomycetes, cause many devastating plant diseases worldwide and are responsible for up to 10% of crop losses. Over the last decade, pesticide application, breeding for plant disease resistance or genetic manipulation of plant immune components have been primarily used to control microbial diseases. However, recent findings indicate that bacterial commensals living benignly inside or at the surface of plant root tissues can confer extended immune functions to the plant host, thereby restricting infection by filamentous microbes.

more

Epigenetic information storage in plants

2018 Krause, Kristin; Coupland, George; Turck, Franziska

Genetics Plant Research

An epigenetic memory determines how strongly genes are expressed. Polycomb Group protein complexes stably shut down genes by compacting the packaging material of DNA. Recent studies in plants showed that two different and short DNA sequences, called teloboxes and RY motifs, are involved in this epigenetic process. Genes that are under epigenetic regulation are enriched in both motifs, often in combination. Specialized transcription factors, which recognize teloboxes and RY motifs, also directly bind to building blocks of the Polycomb Group and thus stabilize the memory of target genes.

more

To improve crop quality and yield, breeders need to control the fertility of stamens, the male organs that produce pollen within sacs called anthers. For example, it would be ideal to manipulate at will the release of pollen from anthers. However, this firstly requires a detailed understanding of how anther cells themselves activate pollen release. In barley, this activation seems to be triggered by the phytohormone auxin and requires enzymes to separate specific cells from each other to finally open the anthers.

more
Go to Editor View