Max Planck Institute for Biology of Ageing

Max Planck Institute for Biology of Ageing

All humans age – just like almost all other living organisms. One reason is that the genetic material, the DNA, is increasingly damaged over time in every cell. Scientists at the Max Planck Institute for the Biology of Ageing study how cells age during their lifetime and examine which genes and environmental factors are involved in the process.

The scientists employ molecular-biological and genetic techniques to explain the fundamental processes on the basis of model organisms, such as mice, fruit flies and threadworms. These animals are particularly suitable as their genomes are well understood and they have a relatively short life expectancy. It is known, for instance, that the life expectancy of a threadworm is influenced by around 100 genes and that insulin signal transduction is involved in the ageing of its cells. Researchers are certain that similar processes also influence ageing and life span in human beings. In the long-term, basic research is expected to contribute to people being able to enjoy longer and healthier lives.


Joseph-Stelzmann-Str. 9b
50931 Köln
Phone: +49 221 37970-0
Fax: +49 221 37970-800

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS on Ageing

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Molecular Genetics of Ageing


Department Mitochondrial Proteostasis


Department Biological Mechanisms of Ageing


Department Neurobiology of Ageing


Epigenetic changes in old age increase risk of osteoporosis and bone fractures


Internal sensor coordinates the cellular stress response to alter the composition of extracellular proteins


Fundamental signalling pathway is crucial for longevity


Researchers discover an unexpected link between DNA winding and metabolism in the gut to ameliorate ageing


Shortage of DNA building blocks in the cell releases mitochondrial DNA


Linda Partridge and her colleague Sebastian Grönke at the Max Planck Institute for Biology of Ageing in Cologne can’t promise eternal life – but they are at least discovering ways to lead a healthier one. The researchers’ findings in fruit flies and mice have revealed astonishing new insights into ageing that will also benefit us humans.

Life is short, especially for the turquoise killifish, Nothobranchius furzeri: it lives for only a few months and then its time is up. During that short life span it passes through every phase of life, from larva to venerable old fish. Its brief life expectancy – unusual for a vertebrate – has long fascinated Dario Valenzano of the Max Planck Institute for Biology of Ageing in Cologne. In just ten years, he has turned it into a model organism for research on aging.

Postdoctoral Research Fellows (m/f/d)

Max Planck Institute for Biology of Ageing, Cologne November 03, 2021

The mitochondria – microbe conflict

2020 Li, Xianhe; Straub, Julian; Stillger, Katharina; Pernas, Lena

Cell Biology Evolutionary Biology Genetics

Mitochondria, essentially domesticated microbes in our cells, play a defensive role during microbial infection. In previous work, we showed that mitochondria can compete with the human parasite Toxoplasma gondii for fatty acids, thereby restricting its growth. Here, we further investigated the metabolic conflict between mitochondria and Toxoplasma. We report a novel structure we term SPOT - structure positive for outer mitochondrial membrane - that emerges from the outer mitochondrial membrane due to mitochondrial import stress caused by the Toxoplasma.


Rewiring of mitochondria in cancer

2019 MacVicar, Thomas; Langer, Thomas

Cell Biology Developmental Biology Genetics

Many cancers reprogram cellular metabolism in order to sustain tumour growth. Mitochondria are essential organelles which provide cancer cells with the metabolic flexibility required in challenging environmental conditions. Our recent work has revealed that tumour cells growing in low oxygen or nutrient deprived conditions are able to rewire their mitochondria by degrading specific mitochondrial proteins. We propose that analyzing this mechanism will provide therapeutic targets in hard-to-treat tumours such as pancreatic cancer.


Small protein modifications with high impact

2018 Matić, Ivan; Colby, Thomas; Burkert, Annegret

Evolutionary Biology Genetics

ADP-ribosylation (ADPr) is a protein modifier playing key roles in health and disease, from bacterial pathogenesis to cancer. Yet for decades it has been difficult to investigate the detailed mechanism of this modification. Using advanced proteomics, we discovered serine ADPr (Ser-ADPr) as a new and widespread protein marker needed for DNA damage response and were able to describe its biochemical basis by identifying its “writers” and “eraser”. These discoveries opened a large and novel research area into how ADPr regulates essential cellular processes.


Gut-microbes are key regulators of host’s life span and ageing

2017 Valenzano, Dario Riccardo

Cell Biology Developmental Biology Evolutionary Biology Genetics

Gut microbes impact host physiology, affecting health status, and imbalance of the gut microbial commensal communities is associated with disease. Re-establishment of a healthy gut microbial composition can resolve acute and life-threatening bacterial infections. Recent work using the short-lived African turquoise killifish (Nothobranchius furzeri) indicates that gut microbes from young individuals can modulate the general health status and life span in healthy ageing subjects.


Ageing is not a random process. Biological ageing processes are instead regulated by metabolic and genetic mechanisms. Single gene mutations can markedly extend the life span of various organisms. The biology of ageing can be investigated in simple yeast cells, flies, round worms, and also in mice. Gene mutations that extend life span also protect against age-associated diseases such as neurodegeneration, cancer, heart disease, and diabetes. A deeper understanding of molecular mechanisms of longevity can open new avenues for therapies or prevention of these highly relevant diseases.

Go to Editor View