Max Planck Institute for Biological Intelligence (Seewiesen site)

Max Planck Institute for Biological Intelligence (Seewiesen site)

The Max Planck Institute for Biological Intelligence emerged from the two Max Planck Institutes of Neurobiology and for Ornithology in January 2022. The final, legal establishment of the institute took place on January 1, 2023. About 500 employees from more than 50 nations are dedicated to basic research on topics in behavioral ecology, evolutionary research and neuroscience. The institute research focuses on biological intelligence, i.e. the abilities of animal organisms that have evolved through evolution to acquire, store, apply and pass on knowledge about their environment in order to find ever new solutions to problems and adapt to a constantly changing environment. The mechanisms of biological intelligence are being examined at various levels: studies range from molecular interactions to entire groups of individuals.

The institute has two locations, the nature-oriented Campus Seewiesen near Starnberg, and the Campus Martinsried in the southwest of Munich.


82319 Seewiesen
Phone: +49 8157 932-0
Fax: +49 8157 932-209

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS - Biological Intelligence

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Behavioural Neurobiology


Department Behavioural Ecology and Evolutionary Genetics

A white and grey pigeon carefully held in the hands of a person.

Birds show remarkably similar sleep patterns to humans and may experience flight in their dreams

Zebrafish brain shown as grey outlines with bright colored dots, representing the expression of genes in specific cells.

A detailed atlas of gene expression in the zebrafish brain

A wooden nest-box with two birds sitting at the entrance, looking at each other.

Daurian redstarts move closer to humans to protect their nests from brood parasitism

Illustration of two birds in yellow, grey, and black, sitting next to two thermometers showing high and low environmental temperatures, respectively.

Great tits reveal how birds cope with changes in environmental temperatures

Illustration of a fish head with eye and brain cells. Several zebrafish in the background.

Specialized nerve cells in the zebrafish visual system enable recognition of conspecifics

Show more

Anna Proß of the Max Planck Institute for Ornithology researched the vocal behavior of nightingales in Ghana. Here, she talks about her encounters with venomous snakes, her new fondness for plantains, and she reveals how ornithologists are making the most of the COVID-19 pandemic.

Two shadows flit around in the evening light. A bat is chasing after a moth in a wild dance between hunter and prey. For Holger Goerlitz, pursuits like this one are a real thrill. The leader of an Emmy Noether Research Group at the Max Planck Institute for Ornithology in Seewiesen is researching how bats and insects use sound to detect each other.

No zebra finch emerges from the egg as an accomplished singer: each young bird first has to take singing lessons. Songbirds are therefore excellent model organisms for the study of learning processes in vertebrates. Manfred Gahr and his team at the Max Planck Institute for Ornithology in Seewiesen are conducting research into how various songbird species learn their songs and what happens in their brains during the process.

Until recently, following the crowd was not seen as a desirable goal in life. These days, however, everyone is talking about swarm intelligence. But are swarms really smarter than individuals? And what rules, if any, do they follow? With the help of new computational techniques, Iain Couzin from the Max Planck Institute for Ornithology in Radolfzell imposes order on the seeming chaos of swarms.

No job offers available

How behavioural diversity is maintained

2021 Küpper, Clemens

Behavioural Biology Ecology Evolutionary Biology Genetics

Within species diversity in morphology and behaviour is widespread in nature. In ruffs, a substantial amount of this diversity is encoded by variants of a supergene that have different fitness consequences for males and females.


Neural control of vocal interactions in zebra finches

2020 Vallentin, Daniela

Behavioural Biology Ecology Neurosciences

During a good conversation we typically rarely interrupt each other. Although we often already know what we want to say, we suppress our own pronunciation until the other person has finished speaking. How does the brain control this behavior? To better understand the mechanisms involved, we took a closer look at the calling behavior of zebra finches and the neural processes taking place. Like humans, zebra finches coordinate their vocalizations depending on the social situation. This interaction is based on a temporally ordered interplay between inhibiting and excitatory neurons.


The neural basis of duet singing – a neurophysiological field study

2019 Susanne Hoffmann, Lisa Trost, Cornelia Voigt, Stefan Leitner, Alena Lemazina, Hannes Sagunsky, Markus Abels, Sandra Kollmansperger, Andries Ter Maat & Manfred Gahr

Behavioural Biology Ecology Neurosciences

Duet singing is a form of social interaction between two individuals which requires the precise interindividual coordination of vocal emissions. How the brain controls this cooperative behavior was so far unknown. Here, the individual vocalizations and the underlying brain activity in free-living pairs of duetting songbirds has been recorded in parallel with novel miniature transmitters. The data revealed that preprogrammed temporal duet patterns in each songbird’s brain were altered by the partner’s vocalizations to enable optimal interindividual coordination during joint singing.


Acoustic invisibility cloaks and pricked-up ears

2018 Goerlitz, Holger R.

Behavioural Biology Ecology

Our sensory systems are our access to the world. In an evolutionary arms race, bats and insects interact as predator and prey based on exclusively acoustic information. Using microphone systems in the lab and field, we investigate which information and sensory strategies bats use for hunting insect prey. To counter the prey’s defence systems, some bats became inaudible for their unsuspecting prey, while other species rely on the prey’s rustling noises or eavesdrop on the foraging calls of other close-by bats.


Sleeping on the wing

2017 Rattenborg, Niels C.

Behavioural Biology Ecology Microbiology Neurosciences Physiology

For centuries, people have wondered whether birds sleep on the wing during long, non-stop flights. However, until recently there was no direct evidence for sleep in flight. Measuring the brain activity of frigatebirds in the wild showed that these birds can sleep with either one cerebral hemisphere at a time or both hemispheres simultaneously. Despite being able to engage in all types of sleep in flight, the birds slept less than an hour a day, a mere fraction of the time spent sleeping on land.

Go to Editor View