Max Planck Institute for Chemistry

Max Planck Institute for Chemistry

In the atmosphere, everything has to do with everything else – and all of it has to do with chemistry. Scientists at the Max Planck Institute for Chemistry in Mainz therefore study topics such as how ozone or organic substances produced by plants affect the climate. Or the role played by aerosols, tiny airborne particles, in the formation of clouds and rainfall. Generally, the scientists focus on the study of the chemical – and physical – processes in the Earth system, and particularly in the interplay between the atmosphere, oceans, land and biosphere. In so doing, they measure data across the globe, conduct lab tests and construct models of the systems under examination. Another topic of interest is geochemistry: using the chemical characteristics in rocks and sea water, the scientists study the past and present-day processes in the Earth system, for instance, from a climate perspective.


Hahn-Meitner-Weg 1
55128 Mainz
Phone: +49 6131 305-0
Fax: +49 6131 305-1309

PhD opportunities

This institute has no International Max Planck Research School (IMPRS).

The Max Planck Graduate Center (MPGC), which is managed in cooperation with the Johannes Gutenberg University Mainz, constitutes a framework for diverse dissertation topics supervised at several of the University’s established faculties. The MPGC thus constitutes a virtual interdisciplinary faculty with its own regulations for the award of doctoral degrees.
In addition, the Paul Crutzen Graduate School (PCGS) at MPI for Chemistry is a doctoral program in the fields of atmospheric chemistry, physics, environmental physics and geophysics.

Nobel Laureate Paul J. Crutzen has died

He investigated the causes of the hole in the ozone layer and coined the term 'Anthropocene'.


Ventilation made easy

December 01, 2020

A simple ventilation system removes 90 percent of respiratory aerosols which potentially include coronavirus particles, from indoor air

Covid-19 – Calculating aerosol infection risk yourself

Algorithm to estimate coronavirus infection risk from aerosol transmission in the indoor environment and under different safety measures

Odors as navigational cues for pigeons

Volatile organic compounds identified that can be used for olfactory navigation by homing pigeons

Bluesky examines the atmosphere during the Coronavirus lockdown

Two research aircraft investigate reduced concentrations of pollutants in the air


The theoretical physicist Max Delbrück is considered to be one of the co-founders of molecular genetics. He began his career in biology in the 1930s when he was an assistant at the Kaiser Wilhelm Institute for Chemistry. He was awarded the Nobel Prize for Medicine 50 years ago, for his work on the genetic structure of viruses and how they reproduce.

Before Jonathan Williams discovered atmospheric chemistry, he had a problem: he was fascinated by so many things that he didn’t know which scientific discipline to devote himself to. Even today, the scientist at the Max Planck Institute for Chemistry in Mainz has varied research interests. In recent years, for example, another new topic has awoken his curiosity – the trace that our emotions leave behind in the air.

For Lise Meitner, 1938 is something like a turning point in her life. She flees the Nazis and goes to Sweden, where she tries to establish herself as a scientist and finds the solution to a problem that Otto Hahn told her about in a letter. As a result, the former researcher at the Kaiser Wilhelm Institute for Chemistry becomes one of the co-discoverers of nuclear fission.

The Middle East and North Africa are currently being rocked by armed conflicts and political crises. But even if these were to be resolved, many people there will likely be forced to leave their homes in the coming decades. Jos Lelieveld, Director at the Max Planck Institute for Chemistry in Mainz, and his colleagues are predicting that the region will see dramatic climate change and an increase in air pollution, including airborne desert dust.

In many regions of the world, air pollution is set to worsen in the decades to come. Jos Lelieveld and his colleagues at the Max Planck Institute for Chemistry in Mainz forecast where this will happen. Their studies of atmospheric chemistry also uncover the unexpected effects of some substances.

No job offers available

Air pollution shortens Europeans' lives by around two years

2019 Lelieveld, Jos

Chemistry Climate Research Earth Sciences

Air pollution has been significantly underestimated as a health hazard. Calculations of the global health study Global Burden of Disease (GBD) indicated that the global mortality rate due to air pollution was around 4.5 million people a year. In a new study, we show that this number is much higher: 8.8 million per year. In Europe alone, nearly 800,000 people die prematurely every year as a result of air pollution.


Interactions of biological aerosol particles with climate, air pollutants, and health

2018 Fröhlich, J.

Chemistry Climate Research Earth Sciences

Biological aerosol particles are omnipresent in the atmosphere because air is one of the major media for the spread of microorganisms and pollen. The airborne particles affect climate and health. In addition, numerous physical and chemical interactions in the atmosphere lead to altered particle properties. Our research focuses on biological aerosols, their ability to act as ice cores, and the impact of air pollutants on proteins and allergies.


Atmospheric CO2 changes and Quaternary Ice Ages

2017 Martínez-García, Alfredo; Haug, Gerald H.

Chemistry Climate Research Earth Sciences

During the Quaternary, changes in atmospheric CO2 concentrations led to major climate changes such as glacial/interglacial cycles. Our studies indicate that the combination of a decrease in ocean overturning through an increased stratification in the Antarctic zone of the Southern Ocean and increased organic carbon export through iron fertilization in the sub-Antarctic zone of the Southern Ocean can explain much of the G/IG's atmospheric CO2 changes during the last 800,000 years and the entire Quaternary.


Radicals in the dark: NO3 and the nighttime chemistry of the troposphere

2016 Crowley, John; Lelieveld, Jos

Chemistry Climate Research Earth Sciences

Atmospheric chemistry does not stop at sunset but continues via the formation and reactions of the NO3 radical. Whilst this dark chemistry is distinct from that during the day, the day-night systems are strongly coupled. Understanding the present composition of the troposphere and the ability to predict the impact of increasing anthropogenic emissions in the future require detailed understanding of the multifarious gas-phase and heterogeneous processes, both night and day.


Beijing winter haze and its formation mechanism

2015 Cheng, Yafang; Su, Hang; Pöschl, Ulrich

Chemistry Climate Research Earth Sciences

Extreme haze episodes shrouded Beijing during the winter of 2013, causing major environmental and health problems. We show that the severe winter haze was driven by stable synoptic meteorological conditions rather than by an abrupt change of emissions; the fast build-up of PM2.5 in Beijing was mainly controlled by the atmospheric transport; and the production of secondary aerosols is enhanced during the haze periods. This enhancement cannot be explained by the weakened photochemistry suggesting a missing source of PM2.5, which is likely the heterogeneous reaction.

Go to Editor View