Max Planck Institute for Medical Research

Max Planck Institute for Medical Research

At the Max Planck Institute for Medical Research, physicists, chemists and biologists create knowledge of long-term relevance to basic medical science. The institute has a unifying theme: observing and controlling the vastly complex macromolecular interactions in the context of cells - both in health and disease. The presently four departments contribute to this goal through their complementary expertise. They work on optical microscopy with nanometer resolution, on the design of chemical reporter molecules, on macromolecular structure determination and on cellular, materials and biophysical sciences. The institute has a distinguished history of fundamental breakthroughs, evidenced by six Nobel Prizes awarded to its researchers since its foundation.


Jahnstraße 29
69120 Heidelberg
Phone: +49 6221 486-0
Fax: +49 6221 486-351

PhD opportunities

This institute has no International Max Planck Research School (IMPRS).

There is always the possibility to do a PhD. Please contact the directors or research group leaders at the Institute.

Building with DNA

Life on Earth developed from inanimate components. Can we recreate this process in the laboratory, and what tools do we need for this? Using DNA origami, the art of folding at a scale of just a few millionths of a millimetre, we are able to reconstruct individual cellular components. They may be capable of taking over important tasks in our bodies in future.

LInDA – disconnecting cells with light

An optochemical tool for precise control of cell-cell adhesions and study of collective cell behavior

High-definition view of diabetes-related proteins

Scientists have examined a key receptor for the first time using super-resolution microscopy

A molecular marker of physiological aging

Scientists develop a light-emitting biosensor for the point-of-care quantification of a central biochemical cofactor

Fluorescent probes for imaging live cells

Scientists introduce new molecular labels for super-resolution microscopy


STED microscopes can produce extremely detailed images of everything from the transport of individual proteins or tiny membrane vesicles in living cells to the synapses of neurons or the skeletons of tumor cells. The technique was invented by Stefan Hell, Director at the Max Planck Institutes for Biophysical Chemistry in Goettingen and Medical Research in Heidelberg. Now, the spin-off company Abberior Instruments sells the highest-resolution fluorescence microscope on the market – and researchers at both the Institutes and the company continue to push the resolution to its ultimate limit: the single nanometer size scale of a molecule.

Viruses are usually incredibly small, but some deviate from the norm and reach sizes greater than that of a bacterial cell. Matthias Fischer from the Max Planck Institute for Medical Research in Heidelberg is one of a small number of scientists working on giant viruses of this kind.

Life is motion and interaction with the environment. This is equally true of cells within an organism, but for cells to get from one place to another, they not only have to be able to move, they also have to interact with their environment. Joachim Spatz and his team at the Max Planck Institute for Medical Research in Heidelberg are studying how cells manage this. In his search for answers, the winner of the 2017 Leibniz Prize puts cells through their paces on catwalks and obstacle courses to test their adhesive properties.

No job offers available

The puzzle of life: Building a synthetic cell

2019 Göpfrich, Kerstin

Cell Biology Structural Biology

The emergence of life on earth proves that living matter can emerge from inanimate building blocks. But is it possible to replicate this process in the lab? Can individual molecules be assembled into a synthetic cell? With DNA origami, the nanoscale art of folding DNA, we design cellular components. We subsequently assemble these and other molecular building blocks inside cell-like compartments. Piece by piece, a synthetic cell could become a reality, which in the future could also take on important tasks inside the living organism.


Protein engineering brings the clinical laboratory to the patient´s fingertip

2018 Johnsson, Kai

Cell Biology Structural Biology

The treatment of numerous diseases could be improved  by monitoring the blood concentration of disease-relevant metabolites at the point-of-care (POC), ideally even by the patient. Therefore we have developed a biosensor for the accurate quantification of metabolites in small blood samples obtained from a simple finger prick. This biosensor could become an important tool for the diagnosis and management of various diseases.


Cells on the move: collective cell migration under the microscope

2017 Spatz, Joachim P.; Vishwakarma,Medhavi; Das, Tamal; Grunze, Nina

Cell Biology Structural Biology

The collective and correlated migration of cells as a group is a hallmark of tissue remodeling events. As such it is essential to both life-supporting processes, like wound repair and embryonic morphogenesis, as well as pathological processes, like cancer invasion. The Max Planck researchers have successfully decoded the physical and molecular mechanisms that regulate networking and orientation in groups of cells that move as one.


Rocket fuel in bacteria

2016 Dietl, Andreas; Barends, Thomas

Cell Biology Structural Biology

The exchange of nitrogen between the atmosphere and organic matter is crucial for life on Earth. One major route for this cycle, discovered only in the 1990s, is the anammox pathway that is found in certain bacteria. It proceeds via hydrazine, a highly reactive substance used by humans as a rocket fuel. A study of the structure of the enzymes involved in making and handling hydrazine in the bacterial cell offers striking insights into the possibilities of an unconventional intracellular chemistry.


How do we find our way?

2015 Sprengel, Rolf; Seeburg, Peter H.

Cell Biology Neurosciences Structural Biology

Finding our way in our daily environment is essential for survival, but how do we do it? The answer to this question is relevant to understanding dementia. Mice are a useful experimental model here. A mouse receives a lot of information about its environment and must decide in every situation what information is most helpful and what is misleading. Nerve cells of the central region of the brain, the hippocampus, use NMDA receptors not to store information about the environment, but instead to recognize, judge and decide which items of information are most useful.

Go to Editor View