There is no such thing as "the" Max Planck Institute. In fact, the Max Planck Society operates a number of research institutions in Germany as well as abroad. These Max Planck Institutes are independent and autonomous in the selection and conduct of their research pursuits. To this end, they have their own, internally managed budgets, which can be supplemented by third party project funds. The quality of the research carried out at the institutes must meet the Max Planck Society's excellence criteria. To ensure that this is the case, the institutes' research activities undergo regular quality reviews.
The Max Planck Institutes carry out basic research in the life sciences, natural sciences and the social and human sciences. It is thus almost impossible to allocate an individual institute to one single research field: conversely, it can be the case that different Max Planck Institutes carry out research in the same subject.
Climate extremes, in particular heat waves, droughts, and their combination are inevitably increasing as a result of climate change. But little is known about how these events affect the terrestrial biosphere, which ecosystem functions are severely affected, and what feedbacks this may trigger in the climate system. At the Max Planck Institute for Biogeochemistry we are developing new methods for the detection of extreme events in heterogeneous data streams. Our results show, among other things, how differently various ecosystems can react to extreme events.
Air pollution has been significantly underestimated as a health hazard. Calculations of the global health study Global Burden of Disease (GBD) indicated that the global mortality rate due to air pollution was around 4.5 million people a year. In a new study, we show that this number is much higher: 8.8 million per year. In Europe alone, nearly 800,000 people die prematurely every year as a result of air pollution.
In the age of electromobility, electrochemical energy converters such as fuel cells will play an increasingly important role in everyday life. On this point, diagnostic tools that can precisely determine the various fail states (flooding, drying out, catalyst degradation, poisoning, etc.) of these devices are becoming increasingly important. We report on a new experimental method for fuel cell diagnostics, based on frequency response analysis of concentration input and electrical output (current or cell potential), which can selectively distinguish between the different fail states.
Because of their unique combination of properties, intermetallic alloys based on iron aluminides are considered as being specifically sustainable. Following basic research of the underlying thermodynamics, different alloying concepts have been developed at MPIE. Resulting high-strength alloys are currently tested by industries for various applications, eg. as brake discs in wind power stations or tubes for biomass power plants. Currently, ideal combinations of alloy concepts, processing routes and properties of manufactured parts are investigated in close cooperation with industries.
Scientists at the Max-Planck-Institut für Kohlenforschung have developed new computational approaches to quantify and analyze accurately van der Waals interactions. In a series of studies they demonstrated how important understanding the fine details of intermolecular interactions is for the creation of complex structures and the design of efficient reaction paths. This of intermolecular interactions is for the creation of complex structures and the design of efficient reaction paths. This opens new possibilities for catalysis, biochemistry and materials science.