There is no such thing as "the" Max Planck Institute. In fact, the Max Planck Society operates a number of research institutions in Germany as well as abroad. These Max Planck Institutes are independent and autonomous in the selection and conduct of their research pursuits. To this end, they have their own, internally managed budgets, which can be supplemented by third party project funds. The quality of the research carried out at the institutes must meet the Max Planck Society's excellence criteria. To ensure that this is the case, the institutes' research activities undergo regular quality reviews.
The Max Planck Institutes carry out basic research in the life sciences, natural sciences and the social and human sciences. It is thus almost impossible to allocate an individual institute to one single research field: conversely, it can be the case that different Max Planck Institutes carry out research in the same subject.
New finds of fossils and stone tools from Jebel Irhoud (Morocco) document the origin of our species by about 300,000 years ago in Africa. These fossils are more than 100,000 years older than the previous oldest finds and document important biological and behavioural changes in an early evolutionary phase of Homo sapiens.
Reactive oxygen species (ROS) are commonly generated during virus infections, but their significance is only partially understood. We identified a cell death pathway, oxeiptosis, regulating cell death and cell survival after exposure to ROS. Manipulation of oxeiptosis impairs ROS - and virus - induced cell death in vitro and causes lung inflammation and tissue injury in influenza A infected mice. Since ROS are commonly generated during physiologic and pathologic situations, we anticipate that oxeiptosis plays a prominent role in attenuating a wide range of diseases.
The competition of plants and soil microorganisms for important nutrients such as nitrogen and phosphorus is a key determinant of the amount of carbon that can be stored in land ecosystems. Combining new laboratory experiments and improved numerical ecosystem models generates new insights into the intricate effects of this nutrient limitation for the future development of land carbon storage. This research contributes to a better understanding of the effects of anthropogenic carbon dioxide emission of climate.
The correct three-dimensional organisation of chromatin in the nucleus is a fundamental requirement for the proper functioning of the genome. As such, mutations in elements that determine this architecture lead to developmental disorders and cancer. In this work, chromatin conformation profiling in tightly staged Drosophila embryos revealed a dramatic reorganisation of chromatin that coincides with the zygotic genome activation.
The circulatory system not only supplies the body with oxygen and nutrients, but might also carry toxic compounds and pathogens. To enhance protection of the brain, cerebral blood vessels build the so-called blood-brain barrier. Our studies of the zebrafish brain vasculature show that blood vessel growth and building of the blood-brain barrier are coordinated by two interacting signaling pathways. As the same principles also apply to mammalian cells, the balance of these signaling pathways could be of relevance for human pathological conditions and their treatment.