Max Planck Institute for Gravitational Physics

Max Planck Institute for Gravitational Physics

Since its foundation in 1995, the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI) in Potsdam-Golm has established itself as a leading international research center. Its research program covers the entire spectrum of gravitational physics: from the giant dimensions of the Universe to the tiny scales of strings. The AEI is the only institute in the world that brings together all of these key research fields. AEI scientists investigate the mathematical foundations of Einstein's theory of space-time and gravitation. Others work towards the unification of both fundamental theories of physics – general relativity and quantum mechanics – into a theory of quantum gravity. Other scientists do research on gravitational waves, neutron stars, black holes, the two-body problem in general relativity, and the analytical and numerical solutions of Einstein's equations. They are thus contributing to a new era of astronomy, which began on September 14, 2015 with the first direct detection of gravitational waves on Earth by LIGO.

Central research topics of the other AEI branch in Hannover are the development and implementation of data analysis algorithms for a variety of gravitational wave sources as well as work on gravitational wave detectors.


Am Mühlenberg 1
14476 Potsdam-Golm
Phone: +49 331 567-70
Fax: +49 331 567-7298

PhD opportunities

This institute has several International Max Planck Research Schools (IMPRS):

IMPRS on Gravitational Wave Astronomy
IMPRS for Mathematical and Physical Aspects of Gravitation, Cosmology and Quantum Field Theory

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Astrophysical and Cosmological Relativity


Department Quantum gravity and Unified Theories


Department Computational Relativistic Astrophysics

A heavyweight candidate for dark matter

Researchers postulate a new particle and propose a method to prove its existence

<p>Discovering exoplanets with gravitational waves</p>

Researchers propose a method by which the LISA space observatory could one day work

Four new sources of gravitational waves

LIGO and Virgo Observatories also present their first catalogue

Gravitational waves from merging neutron stars

This cosmic event was also observed in visible light and provides an explanation for gamma-ray bursts

<p>Nobel Prize awarded to gravitational wave researchers</p>

Congratulations from the Max Planck Institute for Gravitational Physics in Potsdam and Hannover, and the Leibniz Universität Hannover


It’s the question of all scientific questions: How did the universe come into being? Jean-Luc Lehners at the Max Planck Institute for Gravitational Physics in Potsdam-Golm is addressing the question using state-of-the-art mathematical tools. In the process, he is also investigating the possibility that there was a precursor universe.

Black holes are a permanent fixture in science fiction literature. In reality, there is hardly a more extreme location in the universe. These mass monsters swallow everything that ventures too close to them: light, gas, dust and even entire stars. It sounds quite simple, but the nature of black holes is complex. Maria Rodriguez, Minerva Group Leader at the Max Planck Institute for Gravitational Physics in Golm, wants to solve some of the puzzles these exotic cosmic bodies present.

Albert Einstein was right: gravitational waves really do exist. They were detected on September 14, 2015. This, on the other hand, would have surprised Einstein, as he believed they were too weak to ever be measured. The researchers were therefore all the more delighted - particularly those at the Max Planck Institute for Gravitational Physics, which played a major role in the discovery.

Gravitational waves are some of the most spectacular predictions of the 1915 general theory of relativity. However, it wasn’t until half a century later that physicist Joseph Weber attempted to track them down. In the early 1970s, Max Planck scientists also began working in this research field, and developed second-generation detectors. The groundwork laid by these pioneers meant the waves in space-time ceased to be just figments of the imagination: in September 2015 they were finally detected.

The properties of one particle can determine those of another even though the two are miles apart and don’t exchange any information. What appears to be a spooky phenomenon is what physicists call entanglement, and they have already observed it in small particles. Now Roman Schnabel, a professor at Leibniz University Hannover and at the nearby Max Planck institute for Gravitational Physics (Albert Einstein Institute), aims to entangle two heavy mirrors.

No job offers available

The first observation of gravitational waves from merging neutron stars

2017 Dietrich, Tim

Astronomy Astrophysics Particle Physics

Over 100 years after the formulation of the theory of general relativity by Albert Einstein and more than 30 years after the first discovery of a binary neutron star system, the gravitational wave signal of colliding neutron stars has been detected for the first time.


Quantum gravity and unification

2016 Nicolai, Hermann

Astronomy Astrophysics Particle Physics Plasma Physics Quantum Physics

General relativity theory and the standard model of particle physics describe physical phenomena correctly over a vast range of distances and are nevertheless incomplete. In order to understand what is happening inside a black hole or at the Big Bang, a new unified theory is sought which contains the standard model and the theory of gravitation as limiting cases, but whose mathematical contradictions are overcome. Maybe reflections on symmetry can help here.


Stable or not stable? A spacetime on the test bench

2015 Maliborski, Maciej; Schell, Christian

Astronomy Astrophysics Particle Physics Quantum Physics

The stability of solutions to Einstein’s equations is essential for the physical interpretation. However, its investigations are mathematically challenging. The Anti-de Sitter space (AdS) is a frequently used solution in theoretical physics, even though only recently insights about its stability were achieved. This article reviews the current state of research concerning that question, in particular the coexistence of stable and instable regimes.


Short gamma-ray bursts are highly energetic flashes of gamma rays lasting less than two seconds. They are most likely produced by the merger of two neutron stars in a binary system and are among the most dramatic events observed in the Universe. Despite decades of scientific progress the detailed physical processes that generate these bursts still remain elusive. Recent numerical simulations on supercomputers, however, play a vital role in unraveling the nature of these bursts.


10+16 dimensional superspace as a building kit for scattering amplitudes

2014 Schlotterer, Oliver

Mathematics Particle Physics Quantum Physics

Scattering amplitudes describe the interactions of elementary particles and form the foundations to predict the results of measurements. They exhibit significantly richer mathematical structures and symmetries as the conventional Feynman-diagram prescription for their computation gives rise to expect. In the subsequent, a formalism with additional symmetries and spatial dimensions is introduced which manifests the hidden elegance of scattering amplitudes and allows for an intuitive approach.

Go to Editor View