There is no such thing as "the" Max Planck Institute. In fact, the Max Planck Society operates a number of research institutions in Germany as well as abroad. These Max Planck Institutes are independent and autonomous in the selection and conduct of their research pursuits. To this end, they have their own, internally managed budgets, which can be supplemented by third party project funds. The quality of the research carried out at the institutes must meet the Max Planck Society's excellence criteria. To ensure that this is the case, the institutes' research activities undergo regular quality reviews.
The Max Planck Institutes carry out basic research in the life sciences, natural sciences and the social and human sciences. It is thus almost impossible to allocate an individual institute to one single research field: conversely, it can be the case that different Max Planck Institutes carry out research in the same subject.
Atmospheric chemistry does not stop at sunset but continues via the formation and reactions of the NO3 radical. Whilst this dark chemistry is distinct from that during the day, the day-night systems are strongly coupled. Understanding the present composition of the troposphere and the ability to predict the impact of increasing anthropogenic emissions in the future require detailed understanding of the multifarious gas-phase and heterogeneous processes, both night and day.
The success of the vast majority of chemical transformations is reliant on the degree of control exhibited over a wide range of variables. Utilizing flow chemistry – where reagents are passed through a set of conditions via thin tubing as opposed to applying conditions to a round bottom flask – has allowed for achieving chemistries and efficiencies previously inaccessible. The modular nature of this technique has facilitated the development of a novel means of chemical synthesis, which targets core functionalities, allowing for multiple derivatives to be produced with a single flow system.
Smart materials are designed to convert an external stimulus into a pre-defined, programmed response. Only a limited number of materials has been developed to date that are able to report on mechanically induced defects by changing their optical properties. Of further interest are materials that are able to self-heal such defects. To obtain these unique properties, mechanoresponsive molecules are required, which respond to the applied force in a well-defined manner. The research goals are to develop such molecules, to understand the mechanisms and to integrate them into novel smart materials.
Nanoparticles are tiny particles with sizes between a millionth and a thousandth of a millimeter. They include natural viruses, as well as synthetic particles that are increasingly used for medical purposes. In order to enter a cell via endocytosis, a nanoparticle must first bind to the outer cell membrane. The membrane then spreads onto the particle surface until the particle is completely engulfed by the membrane. The key parameters that control this process on nanoscopic length scales have only recently been identified.
Active and directed fluid transport are crucial for the survival of eukaryotic organisms. This is often carried out by ciliated tissues e. g., the inner wall of the ventriclar system in the mammalian brain. Using a novel method the complexity of the cilia driven fluid flow in the third ventricle of the brain is revealed. Furthermore, ciliated tissues, which are capable of driving such complex flows are interesting for synthetic biology and applications in technology. Therefore, our working group at the MPI for Dynamics and Self-Organization currently attempts to rebuild such ciliated carpets.