There is no such thing as "the" Max Planck Institute. In fact, the Max Planck Society operates a number of research institutions in Germany as well as abroad. These Max Planck Institutes are independent and autonomous in the selection and conduct of their research pursuits. To this end, they have their own, internally managed budgets, which can be supplemented by third party project funds. The quality of the research carried out at the institutes must meet the Max Planck Society's excellence criteria. To ensure that this is the case, the institutes' research activities undergo regular quality reviews.
The Max Planck Institutes carry out basic research in the life sciences, natural sciences and the social and human sciences. It is thus almost impossible to allocate an individual institute to one single research field: conversely, it can be the case that different Max Planck Institutes carry out research in the same subject.
Extreme haze episodes shrouded Beijing during the winter of 2013, causing major environmental and health problems. We show that the severe winter haze was driven by stable synoptic meteorological conditions rather than by an abrupt change of emissions; the fast build-up of PM2.5 in Beijing was mainly controlled by the atmospheric transport; and the production of secondary aerosols is enhanced during the haze periods. This enhancement cannot be explained by the weakened photochemistry suggesting a missing source of PM2.5, which is likely the heterogeneous reaction.
Today the sustainable generation of fine and platform chemicals from biomass is desirable but still involves many problems. The Biorefinery group of the institute develops efficient separation techniques in order to design new product flows from biomass. New efficient catalytic methodologies are synthesized which withstand the partly extreme conditions while biomass is transferred. Biorefinery and its novel successful strategies for the upgrade of biomass into an array of valuable chemicals is a chance for material science to create a new unconventional generation of polymers and colloids.
Biological organisms utilize a remarkable range of effective strategies for building high performance materials, many of which surpass the state-of-the-art in engineered materials. Researchers from the MPIKG have discovered that some organisms, including spiders and mussels, incorporate tiny amounts of metal ions into protein-based materials to vastly improve mechanical performance (e.g. high toughness, high hardness and even self-healing). Based on this work, researchers are now developing bio-inspired metallopolymers with enhanced performance.
The complex structures which emerge when a fluid invades a porous medium are of great relevance for many problems in the geosciences as well as in technology, engineering, and everyday life. Nevertheless, about fifty years of intense research have not been able to identify the dominant mechanisms at work. We have recently found that the solution is much simpler than anticipated. The mechanism is well hidden, but so elementary that high-school math is sufficient to come up with quantitative predictions.
Phase field models are a crucial tool in the modeling of complex phenomena. In this context, simulation can help to avoid or reduce the number of costly experiments. For this it is necessary to work with efficient algorithms. Here, we describe iterative solvers that deal with the discretized differential equation models and thus allow for an accurate solution of the problems.