There is no such thing as "the" Max Planck Institute. In fact, the Max Planck Society operates a number of research institutions in Germany as well as abroad. These Max Planck Institutes are independent and autonomous in the selection and conduct of their research pursuits. To this end, they have their own, internally managed budgets, which can be supplemented by third party project funds. The quality of the research carried out at the institutes must meet the Max Planck Society's excellence criteria. To ensure that this is the case, the institutes' research activities undergo regular quality reviews.
The Max Planck Institutes carry out basic research in the life sciences, natural sciences and the social and human sciences. It is thus almost impossible to allocate an individual institute to one single research field: conversely, it can be the case that different Max Planck Institutes carry out research in the same subject.
Semiconductor chips and neuronal systems can be electrically coupled on a microscopic level. This research provides the fundament for an application of such hybrid processors in brain research, neuroprosthetics and information technology. On the neuronal side, ion channels, nerve cells and brain tissue are employed. On the electronic side, simple silicon chips with transistors and capacitors are used for the elucidation of the coupling mechanism. On that basis, complex chips are developed with more that 30000 contact sites to supervise neuronal activity with highest spatial resolution.
The structure of viruses provides a remarkable example of simplicity and functionality in biological systems. Composed of a limited number of proteins and often organized according to geometric principles, viral particles are effective devices in the transfer of the viral genome and proteins to host cells. To determine the molecular interactions, cryo electron tomography is employed to reveal the molecular players through which viruses communicate with their hosts and to understand how viruses take advantage of cellular cues in infection and for replicating themselves efficiently.
How are ecosystem functions influenced by the loss of species diversity? How does the presence or absence of particular species affect biogeochemical cycles? The group ‘Organismic Biogeochemistry’ addresses these questions by compiling and analyzing global databases of functional plant traits and ecosystem properties. Three examples are presented to show that species identity effects may influence the carbon cycles at large scales and may thus be relevant in the context of climate change.
Researchers of the MPI for Molecular Biomedicine in Münster have made an important advancement towards obtaining patient-specific stem cells. They have succeeded in resetting adult somatic cells to an embryonic original state with less intrusions than previously necessary: instead of a „cocktail“ of four genes, the scientists needed merely two. This could make future stem cell therapies simpler and safer.
Abstract
Mouse ear cress, Arabidopsis thaliana, is the workhorse of plant genetics, and currently only second to humans when it comes to information about genomic variation within the species. In the past two years, there has been a revolution in sequencing technology, and A. thaliana is an ideal object for exploiting the dramatic improvements in sequencing speed and cost. This report describes the beginning of the 1001 Genomes Project, which has as its goal the complete description of the genomes of 1001 wild strains of A. thaliana.