Max Planck Institute for Gravitational Physics

Max­Planck­Research Magazine

Issue 2017

MaxPlanckResearch 4/2017

The Big Bang Clock

It’s the question of all scientific questions: How did the universe come into being? Jean-Luc Lehners at the Max Planck Institute for Gravitational Physics in Potsdam-Golm is addressing the question using state-of-the-art mathematical tools. In the process, he is also investigating the possibility that there was a precursor universe.

MaxPlanckResearch 1/2017

Traps in Space-Time
Black holes are a permanent fixture in science fiction literature. In reality, there is hardly a more extreme location in the universe. These mass monsters swallow everything that ventures too close to them: light, gas, dust and even entire stars. It sounds quite simple, but the nature of black holes is complex. Maria Rodriguez, Minerva Group Leader at the Max Planck Institute for Gravitational Physics in Golm, wants to solve some of the puzzles these exotic cosmic bodies present.
Issue 2016

MaxPlanckResearch 1/2016

Gravitational Waves

Albert Einstein was right: gravitational waves really do exist. They were detected on September 14, 2015. This, on the other hand, would have surprised Einstein, as he believed they were too weak to ever be measured. The researchers were therefore all the more delighted - particularly those at the Max Planck Institute for Gravitational Physics, which played a major role in the discovery.

MaxPlanckResearch 1/2016

The Search for the Gentle Tremble
Gravitational waves are some of the most spectacular predictions of the 1915 general theory of relativity. However, it wasn’t until half a century later that physicist Joseph Weber attempted to track them down. In the early 1970s, Max Planck scientists also began working in this research field, and developed second-generation detectors. The groundwork laid by these pioneers meant the waves in space-time ceased to be just figments of the imagination: in September 2015 they were finally detected.
Issue 2009

MPR 1 /2009

Spooky Mirror Tricks
The properties of one particle can determine those of another even though the two are miles apart and don’t exchange any information. What appears to be a spooky phenomenon is what physicists call entanglement, and they have already observed it in small particles. Now Roman Schnabel, a professor at Leibniz University Hannover and at the nearby Max Planck institute for Gravitational Physics (Albert Einstein Institute), aims to entangle two heavy mirrors.
Go to Editor View