Max Planck Institute for Terrestrial Microbiology

Max Planck Institute for Terrestrial Microbiology

The mission of the Max Planck Institute for Terrestrial Microbiology is to understand the function, communication and interaction of microorganisms with their environment, to describe them with the aid of mathematical models and to modify them in a targeted manner using synthetic-biological approaches. What processes underlie their enormously diverse metabolic performances in the global biogeochemical cycles? What relevant natural products do they form? How are they able to adapt to environmental changes? What mechanisms underlie the cell cycle and cell polarity of microbial organisms? How do microbes interact with each other and with other organisms such as plants and animals? How can their metabolic properties be specifically modified and used to address current challenges, such as global warming, or the antibiotic crisis? The Max Planck Institute for Terrestrial Microbiology addresses these and other questions through comprehensive basic research, from the atomic level to the ecosystem.


Karl-von-Frisch-Str. 10
35043 Marburg
Phone: +49 6421 178-0
Fax: +49 6421 178-999

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

Principles of Microbial Life: From molecules to cells, from cells to interactions

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Biochemistry and Synthetic Metabolism


Department Natural compounds in organismal interactions


Plant pathogen needs membrane-bound protein complex to be virulent


Study shows how pathogenic bacteria can adapt to varying conditions of the digestive tract


Design and realization of synthetic enzymes open up an alternative to natural photorespiration


Many publications by Max Planck scientists in 2020 were of great social relevance or met with a great media response. We have selected 13 articles to present you with an overview of some noteworthy research of the year


A simple rule of biochemistry drives the evolution of useless complexity


Metabolism 2.0

MaxPlanckResearch 1/2017 Environoment & Climate

Over 50 million genes and 40,000 proteins: combing through international databases for likely candidates, Tobias Erb and his colleagues at the Max Planck Institute for Terrestrial Microbiology in Marburg were faced with an overwhelming choice. In the end, the scientists picked out just 17 enzymes for the first synthetic metabolic pathway that is able to convert carbon dioxide into other organic molecules. Now they have to show that the cycle they sketched out on the drawing board also works in living cells.

Protecting the climate means also protecting the biotopes in which methane-oxidizing bacteria live.

No job offers available

Adding a new dimension to the global carbon cycle

2019 Schada von Borzyskowski, Lennart; Erb, Tobias J.

Ecology Microbiology

Glycolic acid is a direct by-product of photosynthesis and one of the most important compounds in the carbon cycle of the oceans. Though marine bacteria convert some of its carbon back into carbon dioxide, the exact metabolic pathways remained largely unknown. We rediscovered a long forgotten pathway, the BHA cycle. This cycle was overlooked so far, but actually represents the major pathway for glycolic acid degradation in ubiquitous marine Proteobacteria. Its detailed and multidisciplinary elucidation enables reassessment of the global carbon dioxide balance.


Insights into the inner life of living cells

2018 Endesfelder, Ulrike


Single-molecule localization microscopy offers unprecedented insights into living cells. In practice, however, many difficulties persist. By improving an important group of fluorophores, we were able to significantly reduce the damage the method causes in the imaged cells and to establish a novel, aberration-free multi-color strategy. This enables, among other things, the four-dimensional reconstruction of multi-protein-complexes such as the kinetochore in Schizosaccharomyces pombe.


The key enzymes of biological methane formation

2017 Shima, Seigo

Ecology Microbiology

Methane is an end product of anaerobic degradation of organic materials and is a potent greenhouse gas. Roughly, half of the world-wide methane emission is biologically performed by methanogenic archaea. We are interested in the enzymes involved in hydrogenotrophic methanogenesis. Here, we report on the crystal structure of the formyl-methanofuran dehydrogenase (Fwd) and heterodisulfide-reductase/hydrogenase complexes (Hdr/Mvh). These enzyme complexes are involved in the sequential reactions of ferredoxin reduction and CO2-reduction/fixation within the methanogenic pathway.


Synthetic carbon dioxide fixation

2016 Erb, Tobias

Ecology Genetics Microbiology

The conversion of the greenhouse gas carbon dioxide (CO2) into organic compounds is a key process in the global carbon cycle. In the past years, several novel pathways and enzymes for the conversion of CO2 were discovered in microorganisms. In parallel to these discoveries, new approaches were followed by using the methods of synthetic biology to establish artificial pathways for the fixation of CO2 that are more efficient compared to naturally existing CO2-fixation pathways. Synthetic CO2-fixation could pave the way towards novel applications in biotechnology and nanotechnology.


Architecture of bacterial communities

2015 Drescher, Knut

Developmental Biology Ecology Microbiology

Many bacterial species colonize surfaces and form dense three-dimensional structures, known as biofilms, which are resistant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. The developmental process that gives rise to biofilms is largely unknown. It was recently discovered that between the initial surface attachment and mature tower-shaped biofilm structures, the cellular architecture undergoes several critical transitions.

Go to Editor View