There is no such thing as "the" Max Planck Institute. In fact, the Max Planck Society operates a number of research institutions in Germany as well as abroad. These Max Planck Institutes are independent and autonomous in the selection and conduct of their research pursuits. To this end, they have their own, internally managed budgets, which can be supplemented by third party project funds. The quality of the research carried out at the institutes must meet the Max Planck Society's excellence criteria. To ensure that this is the case, the institutes' research activities undergo regular quality reviews.
The Max Planck Institutes carry out basic research in the life sciences, natural sciences and the social and human sciences. It is thus almost impossible to allocate an individual institute to one single research field: conversely, it can be the case that different Max Planck Institutes carry out research in the same subject.
A knowledge of the structure and properties of bone is fundamental for the understanding and treatment of bone fractures and bone diseases such as osteoporosis. Methodologies from materials science have been shown to be useful in evaluating current therapies as well as in the development of new treatments for bone disease. Bone is a complex hierarchically structured material with remarkable mechanical properties, consisting principally of mineralized collagen fibrils. A better understanding of growth, structure and mechanics will help answer clinical needs in the future.
Within any living organism sugars as part of many cellular building blocks regulate inter- and intra- cellular processes. To characterize glycosylation in full, computer models are becoming increasingly significant. The example of the Glycosylphosphatidylinositol anchor shows that classical structure analysis with molecular dynamics techniques must be combined with system representations at coarser levels. Only in this way, many unspecific but important functions of sugar residues may be uncovered.
Spreading processes occur in many complex systems. They play an important role, for instance, in the formation of epidemics and the spread of evolutionary novelties. Until recently, most theories of those processes ignored or approximated the role of noise. The example of evolution illustrates, however, that random chance effects should not be neglected. We report a substantial advance in the analysis of these and more complex models.
Electrochemical energy systems like fuel cells, batteries and electrolysis cells are attractive for future energy systems as they are highly energy efficient and can follow the dynamic demand of energy or can convert a dynamic oversupply of electricity gained from renewables into chemical energy. A deeper understanding of the complex processes at electrodes and in such cells can be reached when systematically applying dynamic electrochemical analysis methods. In addition, such methods may be used to detect the state of cells and electrodes or even to sense concentrations.
Operations in chemistry and biology are based on complex interactions between molecules. The biological and chemical generation of hydrogen, one of the energy carriers of the future, by enzymes or catalysts at ambient temperature was investigated by applying various computational approaches. Nature-inspired chemical systems are necessary in order to reveal details of the enzymatic system. In molecular systems biology, the focus and the way of investigations shift and enable the understanding of interactions and kinetics of proteins in networks.