There is no such thing as "the" Max Planck Institute. In fact, the Max Planck Society operates a number of research institutions in Germany as well as abroad. These Max Planck Institutes are independent and autonomous in the selection and conduct of their research pursuits. To this end, they have their own, internally managed budgets, which can be supplemented by third party project funds. The quality of the research carried out at the institutes must meet the Max Planck Society's excellence criteria. To ensure that this is the case, the institutes' research activities undergo regular quality reviews.
The Max Planck Institutes carry out basic research in the life sciences, natural sciences and the social and human sciences. It is thus almost impossible to allocate an individual institute to one single research field: conversely, it can be the case that different Max Planck Institutes carry out research in the same subject.
With nearly 1 million people dying per year, malaria is a global health problem. Artemisinin combination therapies are regarded as first-line drugs. However, their supply is limited, as artemisinin is currently solely extracted from plants. Its precursor dihydroartemisinic acid on the other hand can be obtained by a biotechnological process. A continuous flow chemistry setup was developed to produce artemisinin from this precursor in high yield just using oxygen and light.
Interfacial properties influence the bulk phase behavior and often the bulk structure. For very small systems (nanoparticles, thin films) this is obvious. The relative amount of interfacial molecules is large. Yet, interfacial influences often are also important for macroscopically large systems because these typically originate from small nano size aggregates. In addition, the growth to macroscopic size always occurs at the interface. Local interfacial transport conditions affect the growth kinetics and thus also the structure and properties of the resulting macroscopic entity.
Synthetic sugars offer great potential e.g. for the development of new treatments or vaccines. Thus chemists have been searching for new molecules offering the same biological activity that can be synthesized more easily. One important class of such mimetics are sugar polymers, a combination of polymer chains with natural sugars. In order to understand how such sugar polymers mimic the activity of natural sugars and how to more effectively synthesize such sugar polymers, a new class of monodisperse polymers is currently developed at the MPICI and tested for their properties.
Robots acquire information from the environment, process it and then use it to autonomously perform tasks. A big challenge is to have robots and humans cooperate effectively in our every day’s life. To realize this vision the role of humans must be taken into account. Robot design and control must be conceived to meet the human needs and facilitate the interaction. Our research efforts are guided by these principles and aimed at realizing semi-autonomous robotic systems able to perform local tasks – supervised by a human – on their own in a so-called shared control scenario.
During the last years HPC-clusters have become common even beyond the established computing centers. The increasing computing power implies higher technical demands on the infrastructure. In particular the efficient cooling of these systems poses a challenge.