Prof. Dr. Ferdi Schüth

Phone:+49 208 306-2373Fax:+49 208 306-2995


MPR 3 /2010

Our energy needs are growing rapidly, while at the same time conventional sources of energy such as fossil fuels endanger the climate. Basic researchers are working on new concepts so that our earth will remain green. [more]

Chemistry . Climate Research . Material Sciences . Particle Physics . Plasma Physics

What conclusions can be drawn from all these considerations and examples? With the exception of the activities of the IPP, the purpose of which was the technical development of a fusion reactor from the outset, major developments from the Max Planck Society that are of relevance to new energy systems have emerged typically from the investigation of basic research questions. This is where the strength of the Max Planck Society lies: its task is to clarify the basic processes that play a role in energy transformation processes and to present new approaches that do not lie in the mainstream of technological development.

With its focus on individual researchers and their ideas, the Max Planck Society is optimally positioned to fulfil this task. If this approach proves insufficient, however, the Max Planck Society has also developed tools with which interesting insights can be adopted and progressed beyond the level of basic research. One of these instruments is its inter-institutional research initiatives. The ‘Enerchem’ initiative, which researches carbon-based nanostructure systems as components of future energy systems, was established in the field of basic energy research. This initiative was created because top-level expertise for the resolution of individual issues in this field was available in a series of institutes and the bundling of this expertise enables more rapid progress to be made. Enerchem researches new electrode materials for high-performance batteries, for example; the expertise required here comes from the Max Planck Institute for Colloids and Interfaces, the Max Planck Institute for Polymer Research and the Max Planck Institute for Solid State Research. The suitability of ammonia for hydrogen storage is also being studied through cooperation between the Fritz Haber Institute of the Max Planck Society and the Max Planck Institute for Coal Research. The Max Planck Institute for Colloids and Interfaces and the Fritz Haber Institute are also working on the hydrothermal treatment of biomass for the generation of carbon, and are studying whether this could provide a feasible CO2 sink and thereby contribute to improving the carbon balance of the earth’s atmosphere.

If the relevant expertise is not available within the Max Planck Society, research alliances can be formed with other research organisations. The Fraunhofer-Gesellschaft, with its application-oriented approach, is an ideal partner in this context. The joint ProBio project between the Max Planck Institute for Dynamics of Complex Technical Systems, the Fraunhofer Institute for Factory Operation and Automation and the Fraunhofer Institute for Ceramic Technologies and Systems aims to develop systems for the generation of hydrogen from biomass, which use a periodically operated metal oxide/metal system for hydrogen purification and storage. The metal oxide is converted into metal by a hot raw pyrolysis gas; when this process is completed, the metal can react with water and generate pure hydrogen, and the metal oxide is recovered. Several units of this kind operated in parallel could be used for the efficient production of hydrogen in such systems.

Thus far, the aspects of reorienting our energy systems that involve the humanities have been excluded from this presentation. Numerous basic issues that are typically researched by the Max Planck Society also arise in this context. Energy issues and climate change extend beyond national borders and affect goods that are not privately owned; such goods are the focus of interest of the Max Planck Institute for Research on Collective Goods. Basic research studies on the question as to how people make decisions, which have been carried out at the Max Planck Institute for Human Development, are also highly relevant to the energy debate. Consideration of the often highly emotional discussions surrounding our energy alternatives clearly shows that the decision-making processes which give rise to the preference for one technology option over another are an important research topic in themselves. All of the examples show that a wide variety of research is carried out by the Max Planck Society on problems of crucial significance to the development of future energy systems. Although energy research is strongly systematic in nature and needs to be carried out by large research alliances with strong engineering expertise working on a short to medium-term timescale, long-term basic research issues as explored in many institutes of the Max Planck Society must also be investigated to demonstrate new sustainable approaches for the transformation of our energy systems. This approach is hardly likely to yield short-term solutions - however, our society is reliant on the quest for more than short-term solutions. In order to provide a sustainable and viable basis for our energy systems, basic research must be carried out in parallel to the further development of already-known energy technologies.

loading content