Max-Planck-Institut für Astrophysik

Max-Planck-Institut für Astrophysik

Die Arbeit der Wissenschaftler am Max-Planck-Instituts für Astrophysik in Garching ist überwiegend theoretisch ausgerichtet. Einen besonderen Schwerpunkt stellt dabei die numerische Simulation von astrophysikalischen Systemen auf Hoch- und Höchstleistungsrechnern dar. Neben der Forschung zur Sternentwicklung und zu hydrodynamischen Phänomenen – etwa Sternkollisionen, Supernova-Explosionen oder Materiescheiben um schwarze Löcher – spielt die Strukturbildung im Universum eine zentrale Rolle. Am Computer stellen Astrophysiker nach, wie sich aus der anfänglichen kosmischen „Urmaterie“ die Galaxien und Sterne entwickelt haben, wie aus nichts alles wurde. Außerdem entwickeln die Forscher Algorithmen zur Auswertung der riesigen Datenmengen, die bei immer größeren Simulationen oder Satellitenmissionen anfallen.

Kontakt

Karl-Schwarzschild-Str. 1
85748 Garching
Telefon: +49 89 30000-0
Fax: +49 89 30000-2235

Promotionsmöglichkeiten

Dieses Institut hat eine International Max Planck Research School (IMPRS):

IMPRS on Astrophysics

Darüber hinaus gibt es die Möglichkeit zur individuellen Promotion bei den Direktoren bzw. Direktorinnen und in den Forschungsgruppen.

Glutrot wabernde Sonnenoberfläche mit Gasauswürfen vor schwarzem Hintergrund

Ein Gedankenexperiment untersucht, was passieren würde, wenn ein winziges primordiales Schwarzes Loch im Zentrum der Sonne säße

mehr

Die Ausstellung „Universe on Tour“ bietet Gelegenheit zum Dialog über Astronomie

mehr

Zum Auftakt des Wissenschaftsjahres „Unser Universum“ bietet die Max-Planck-Gesellschaft deutschlandweit ein vielseitiges Programm an

mehr

Das James-Webb-Teleskop enthüllt weit entfernte Milchstraßensysteme

mehr

Computersimulationen zeigen, dass Doppelsterne eine große Menge dieses lebenswichtigen Elements produzieren

mehr
Mehr anzeigen

Supernovae künden von kosmischen Katastrophen. Wenn ein massereicher Stern am Ende seines Lebens in die Energiekrise schlittert oder eine bereits gestorbene Sonne mit Materie überfüttert wird, endet das in einer Explosion unvorstellbaren Ausmaßes. Was geschieht dabei im Einzelnen? Hans-Thomas Janka vom Max-Planck-Institut für Astrophysik in Garching will es genau wissen. Er simuliert Supernovae im Computer und bringt sie in der virtuellen Welt zum Bersten – mittlerweile sogar in drei Dimensionen.

Gravitationswellen gehören zu den spektakulären Vorhersagen der allgemeinen Relativitätstheorie von 1915. Aber erst ein halbes Jahrhundert später versuchte der Physiker Joseph Weber sie aufzuspüren. Anfang der 1970er-Jahre stiegen auch Max-Planck-Wissenschaftler in dieses Forschungsfeld ein und entwickelten Detektoren der zweiten Generation. Dank der Vorarbeiten dieser Pioniere blieben die Wellen in der Raumzeit keine Hirngespinste: Im September 2015 gingen sie endlich in die Falle.

Sie gehören zu den exotischsten Objekten im All: Neutronensterne. Unvorstellbar dicht und nur 20 Kilometer groß, rotieren sie rasend schnell um ihre Achsen, wobei sie Strahlungskegel in den Raum senden. Manche dieser kosmischen Leuchttürme haben besonders starke Magnetfelder. Michael Gabler vom Max-Planck-Institut für Astrophysik in Garching studiert diese Magnetare – und lernt so einiges über deren Beschaffenheit

Albert Einstein hatte sie vorhergesagt, moderne Großteleskope haben sie entdeckt: Gravitationslinsen. Forscher simulieren sie heute am Computer.

Momentan sind keine Angebote vorhanden.

Reflektiertes Quasarlicht lässt riesige, kühle Gasnebel aufleuchten

2022 Costa, Tiago; Arrigoni Battaia, Fabrizio 

Astronomie Astrophysik

Bereits in der Frühzeit des Universums scheinen supermassereiche schwarze Löcher mit dem Milliardenfachen der Masse unserer Sonne in den Zentren massereicher Galaxien zu residieren. Wenn interstellares Gas in ihrem mächtigen Gravitationsfeld beschleunigt wird, sendet es große Mengen an Strahlung aus: Solche „Quasare“ überstrahlen die gesamte Galaxie. Jüngste Beobachtungen haben gezeigt, dass die ersten Quasare oft von hellen, riesigen Nebeln umgeben sind. Diese können sich über mehrere 100.000 Lichtjahre erstrecken und sind damit etwa zehnmal so groß wie ihre Wirtsgalaxie. 

mehr

Im Jahr 2020 fanden Wissenschaftler in Polarisationsdaten des kosmischen Mikrowellenhintergrunds, die der Planck-Satellit bei hohen Frequenzen gesammelt hatte, einen verlockenden Hinweis auf eine neue Physik, die die „Paritätssymmetrie“ verletzt. Auf der Grundlage der Planck-Daten und einer vereinfachten Annahme, wie sich die polarisierte Staubemission in der Milchstraße auswirkt, betrug das Konfidenzniveau 99,2 % dafür, dass eine Verletzung der Symmetrie physikalischer Gesetze bei einer Umkehrung der Raumkoordinaten vorlag. 

mehr

Galaxienentstehung und Reionisation in den THESAN-Simulationen

2021 Garaldi, Enrico

Astronomie Astrophysik

Vor etwa 13 Milliarden Jahren entstanden die ersten Sterne und Galaxien, die mit ihrer Strahlung den Wasserstoff zwischen den Galaxien ionisierten. Dieser Prozess wird kosmische Reionisation genannt. Trotz ihrer engen Verknüpfung werden die Entstehung der ersten Galaxien und der Reionisationsprozess normalerweise getrennt voneinander untersucht. Ein Team unter der Leitung eines MPA-Wissenschaftlers hat nun mit THESAN die erste Simulationsreihe entwickelt, welche die damals relevanten Prozesse und ihre Verknüpfung gleichzeitig erfasst.

mehr

Die Entstehung Schwarzer Löcher mittlerer Masse

2021 Rizzuto, Francesco; Naab, Thorsten

Astronomie Astrophysik

Schwarze Löcher mittlerer Masse sollten das Bindeglied zwischen stellaren und supermassereichen Schwarzen Löchern sein, aber es ist unklar, wie sie entstehen könnten. Junge massereiche Sternhaufen sind vielversprechende Umgebungen für die Entstehung derartiger Objekte. Ein internationales Team unter der Leitung von MPA-Forschern hat realistische Simulationen von Sternhaufen durchgeführt, in denen diese fehlenden Bindeglieder durch das Verschmelzen von Sternen und Schwarzen Löchern entstehen.

mehr

Wenn Gas auf ein supermassereiches Schwarzes Loch zuströmt, setzt es riesige Energiemengen frei und erzeugt intensive Teilchenwinde. Diese fegen Gas aus der Galaxie heraus, und das Schwarze Loch schneidet sich selbst auf diese Weise von weiterem Nachschub ab. Ein neues Modell ermöglicht es, Winde, die durch solche akkretierenden Schwarzen Löcher beschleunigt werden, in Simulationen physikalisch genau zu simulieren. Die Winde blasen Gas aus dem galaktischen Kern und stoppen das Einströmen weiterer Materie aus dem galaktischen Halo.

mehr
Zur Redakteursansicht