A stiff breeze in space: A storm is raging on Eta Carinae. However, this star, one of the most massive in the Milky Way, is not blowing hot air into space, but a stream of gas, dust and charged particles. The stellar wind also has a long, slightly egg-shaped form – as models for very rapidly rotating, massive suns have been predicting. And the latest measurements have confirmed this. Researchers, including scientists from the Max Planck Institute for Radio Astronomy in Bonn, used an instrument called AMBER (*Astronomical Multi-Beam Recombiner*) on the Very Large Telescope Interferometer at the European Southern Observatory. The observations show that the stellar wind cloud deviates noticeably from a symmetrical sphere in both continuum light (inner blue area) and in the light of a characteristic hydrogen emission line (red). The regions also differ in size: the area of dense stellar wind in the continuum reveals a spread of around 1.5 billion kilometers; the zone of the line emission appears to be twice as large. Despite the new results, questions about Eta Carinae still remain. Is it really a single star with the mass of 100 suns? Does the periodicity of its light curve indicate the 5.53 year orbit of a sister star? Is there even another stellar component with an 85-day orbit? One thing is certain: a huge outbreak of material that, almost 160 years ago, created a cloud called a ”homunculus” and the powerful stellar wind is heralding the death throes of the Eta Carinae mega-sun.

Illustration: MPI FOR RADIO ASTRONOMY – STEFAN KRAUS