Max Planck Institute for Solar System Research

Max Planck Institute for Solar System Research

The name itself actually precisely describes its field of research: the Max Planck Institute for Solar System Research. The scientists in Göttingen focus on Earth's cosmic neighbourhood – the Sun, the planets and their moons, as well as a variety of small bodies. They look into the heart of the star that keeps us alive, investigate its gaseous envelope, the solar magnetic field and the high-energy particles which our Sun ejects into space. The surfaces of the planets and their different “spheres” – atmospheres, ionospheres and magnetospheres – their rings and satellites, as well as comets and planetoids are further subjects for physical models and numerical simulations. And since the objects are not that far away, astronomically speaking, the Max Planck researchers love to take a look around for themselves – not in person, but by using international space probes and landers, for which they develop and build instruments and detectors.

Contact

Justus-von-Liebig-Weg 3
37077 Göttingen
Phone: +49 551 384 979-0
Fax: +49 551 384 979-240

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS for Solar System Science

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Physics of planets and comets

more

Department Physics of the interior of the Sun and Sun-like stars

more

Department Planetary Science Department

more

Department Solar physics and heliosphere

more
In the background: a black surface with isolated bright small dots representing stars.
In the foreground: the left half of the image consists of a grey sphere with various shades and stripes, illuminated from a distance by a yellow light source.

Discovery of giant exomoons around the planets Kepler-1625b and Kepler-1708b called into question

more
This year's ERC Synergy Grantees of the Max Planck Society

The scientists and their research teams receive around 40 million euros in funding for their work

more
Glowing Jupiter against a black background

A collision nearly 30 years ago permanently changed Jupiter's atmospheric chemistry; the aftermath is still helping to better understand the gas giant.

more
Bright glowing ball in the right centre of the image lies in the middle of a reddish glowing band viewed from the side. A small planet is hidden in the middle of this band and in the left half of the image.

How an exoplanet survived the rebellion of its home star

more

A star’s chemical composition strongly influences the chances for life on planets in its neighbourhood

more
Show more

Life on Earth, as we know it today, exists thanks to many coincidences – and the planet Jupiter. Its weighty role in the Solar System is one aspect of its turbulent history, a subject Thorsten Kleine and Joanna Drążkowska investigate using meteorites and computer simulations at the Max Planck Institute for Solar System Research in Göttingen.

Hans-Peter Doerr from the Max Planck Institute for Solar System Research spent three weeks working at the Big Bear Solar Observatory in California. He explains why the solar telescope stands on the water and tells us about anglers, gun enthusiasts, and alternative ways of transporting data.

The bizarre landscape seen in the photo is literally not of this world. Rather, the image shows the central area of the Occator crater on Ceres – a dwarf planet with a diameter of around 950 kilometers.

Small bodies orbiting the Sun are either comets or asteroids – for many years, this was the official line in textbooks. At the Max Planck Institute for Solar System Research in Goettingen, Jessica Agarwal is studying “active asteroids”, small solar system bodies that don’t quite fit into the traditional categories.

A space probe has journeyed to Ceres for the first time. Scientists from the Max Planck Institute for Solar System Research in Göttingen are using its two onboard cameras to explore the dark surface of the dwarf planet. They have already discovered signs of frozen water – but is there also an ocean slumbering deep below the craters?

No job offers available

The WHOLE SUN Investigation 

2022 Bekki, Yuto; Cameron, Robert; Gizon, Laurent

Astronomy Astrophysics

Understanding the Sun’s magnetic activity requires us to understand the large-scale motions that drive the magnetic fields inside the Sun. These motions are driven by small-scale rotating convection. Our current best models for the large-scale dynamics are very wrong, and do not even predict the correct sign for the Sun’s latitudinal differential rotation – the Sun’s poles are observed to rotate slower (taking about 35 days for one rotation) than the equator (which takes about 25 days). 

more

Cassini sheds new light on the physics of planetary radiation belts

2021 Roussos, Elias; Krupp, Norbert; Christensen, Ulrich

Astronomy Astrophysics

Planetary radiation belts are those regions near a planet where the intrinsic magnetic field is strong enough to trap energetic charged particles like electrons and protons. In the past processes in the radiation belts of the Earth were thought to be the benchmark for all the other planetary radiation belts in the solar system. However, recently measurements onboard the Cassini spacecraft in the Kronian system have shown that Saturn’s belts are very different compared to Earth. A particle detector built at the MPI for Solar System research (MPS) even discovered a new, formerly unknown belt.

more

Brightness variability of solar-like stars

2020 Shapiro, Alexander; Reinhold, Timo; Witzke, Veronika

Astronomy Astrophysics

The brightness variability of the Sun and other cool stars is one of the most exciting manifestations of the interaction between the matter and the magnetic field in their atmospheres. The recently achieved unprecedented precision of stellar brightness measurements as well as the progress in simulations of stellar atmospheres allows coming closer to understanding the origin of stellar magnetic activity and resulting brightness variations. Furthermore, stellar data allows constraining solar magnetic activity in the past and future as well as the resulting solar-terrestrial connection.

more

Rossby waves in the Sun

2019 Gizon, Laurent; Proxauf, Bastian

Astronomy Astrophysics

Researchers from the Solar and Stellar Interiors Department at the Max Planck Institute for Solar System Research have discovered new giant vortex waves in the Sun. Because of their long periods of oscillation of several months, the detection of these waves required many years of observations from the Solar Dynamics Observatory (SDO), a NASA spacecraft in operation since 2010. These waves are an important component of the solar convection zone dynamics at the largest spatial scales. They can potentially be used as new probes of the solar interior.

more

Exploration of dwarf planet Ceres 

2018 Nathues, Andreas; Christensen, Ulrich R.

Astronomy Astrophysics

The exploration of the conditions that have prevailed in the early Solar System was the goal of NASA’s Dawn mission [1] for which MPS provided two structurally identical cameras. Dawn initially explored the asteroid Vesta followed by Ceres. The mission phase at Ceres has led to remarkable discoveries. Water ice is present both on the surface and in the interior of Ceres and has modified their mineral composition. In addition, cryomagmatic activity was proven.

more
Go to Editor View